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Hierarchical Control of Constrained Multi-Agent Legged Locomo-
tion: A Data-Driven Approach

Randall T. Fawcett

(ABSTRACT)

The aim of this dissertation is to systematically construct a hierarchical framework that
allows for robust multi-agent collaborative legged locomotion. More specifically, this work
provides a detailed derivation of a torque controller that is theoretically justifiable in the
context of Hybrid Zero Dynamics at the lowest level of control to produce highly robust
locomotion, even when subject to uncertainty. The torque controller is based on virtual
constraints and partial feedback linearization and is cast into the form of a strictly convex
quadratic program. This partial feedback linearization is then relaxed through the use of
a defect variable, where said defect variable is allowed only to change in a manner that is
consistent with rapidly exponentially stable output dynamics through the use of a Control
Lyapunov Function. The torque controller is validated in both simulation and on hardware
to demonstrate the efficacy of the approach. In particular, the robot is subject to payload
and push disturbances and is still able to remain stable. Furthermore, the continuity of the
torque controller, in addition to robustness analysis of the periodic orbit, is also provided. At
the next level of control, we consider emulating the Single Rigid Body model through the use
of Behavioral Systems Theory, resulting in a data-driven model that adequately describes a
quadruped at the reduced-order level. Still, due to the complexity and a considerable number
of variables in the problem, the model further undergoes a 2-norm approximation, resulting
in a model that is computationally efficient enough to be used in a real-time manner for tra-
jectory planning. In order to test the method rigorously, we consider a series of experiments
to examine how the planner works when using different gait parameters than that which was
used during data collection. Furthermore, the planner is compared to the traditional Single
Rigid Body model to test its efficacy for reference tracking. This data-driven model is then
extended to the multi-agent case, where each agent is rigidly holonomically constrained to
one another. In this case, the model is used in a distributed manner using a one-step com-
munication delay such that the coupling between agents can be adequately considered while
spreading the computational demand. The trajectory planner is evaluated through various
hardware experiments with three agents, and simulations are also used to display the scal-
ability of the approach by considering five robots. Finally, this dissertation examines how
traditional reduced-order models can be used in tandem with data-based models to reap the
benefits of both methods. More specifically, an interconnected Single Rigid Body model is
considered, where the interaction forces are described via a data-driven model. Simulations
are provided to display the efficacy of this approach at the reduced order level and show
that the interaction forces can be reduced by considering them in the trajectory planner. As



in the previous cases, this is followed by experimental evaluation subject to external forces
and different terrains.



Hierarchical Control of Constrained Multi-Agent Legged Locomo-
tion: A Data-Driven Approach

Randall T. Fawcett

(GENERAL AUDIENCE ABSTRACT)

The goal of this dissertation is to create a layered control scheme for teams of quadrupeds
that results in stable and robust locomotion, including a high-level trajectory planner and
a low-level controller. More specifically, this work outlines an optimal torque-based whole-
body controller that operates at the joint level to track desired trajectories. These trajectories
are obtained by a high-level trajectory planner, which utilizes a data-driven predictive con-
troller to create an optimal trajectory without explicitly requiring knowledge of a model. The
hierarchical control scheme is then extended to consider collaborative locomotion. Namely,
this work considers teams of quadrupeds that are rigidly connected to one another such that
there is no relative motion between them. There are potentially large interaction forces that
are applied between the robots that cannot be measured, which can result in instability. Fur-
thermore, the models used to describe the interconnected system are prohibitively complex
when being used for trajectory planning. For this reason, the data-driven model considered
for a single robot is extended to create a centralized model that encapsulates not only the
motion of a single robot but also its connection constraints. The resulting model is very
large, making it difficult to use in a real-time manner. Therefore, this work outlines how
to distribute the model such that each robot can locally plan for its own motion while also
considering the coupling between them. Finally, this work provides one additional extension
that combines a traditional physics-based model with a data-driven model to capitalize on
the strengths of each. In particular, a physics-based model is considered as a baseline, while
a data-driven model is used to describe the interaction forces between robots. In using this
final extension, both improved solve times and smoother locomotion are achieved. Each of
the aforementioned methods is tested thoroughly through both simulations and experiments.
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Chapter 1

Introduction

Human-centered societies are developed with human beings in mind, and in particular, for
bipedal walkers capable of maneuvering over discontinuous terrains, including stairs and
gaps in the environment. For this reason, traditional robots such as general wheeled vehicles
can be inefficient when navigating many man-made structures. Conversely, legged robots
maintain similar mobility, agility, and dexterity when compared to humans, allowing them to
more efficiently navigate our environments. Although most structures are made with bipeds
walkers in mind, it can also be observed that dogs and various other legged organisms possess
the ability to maneuver in these environments as well. Quadrupeds, compared to their
bipedal counterpart, take up more floor space but also possess superior stability properties
and load-carrying ability, which motivates their use for accomplishing tasks alongside human
beings. In particular, their enhanced stability yields an environment that is safer for humans,
and their additional load-carrying capacity makes them more useful in terms of the number
of tasks they can accomplish. Furthermore, a considerable number of legged robots have been
created for this purpose (see Fig. 1.1), allowing researchers to develop and test algorithms
quickly. However, simply having the ability to maneuver throughout various environments
efficiently is only the first step in deploying legged robots to assist humans.

1.1 Motivation

As a society, human beings often work together in order to accomplish tasks. For example
consider collaboratively transporting an object too difficult for one individual to move due to
its size, geometry, or weight. While there are many applications in which a wheeled vehicle
could assist in these types of tasks, these machines are not optimal when navigating human-
centered societies and daunting terrain. In particular, the large wheeled robots are often only
able to function in a factory or warehouse setting with little to no terrain obstructions. This
motivates the development of collaborative-legged robots that can work together to assist
humans and each other in complex and labor-intensive tasks—including cooperative trans-
portation and manipulation—in challenging environments. While several quadrupeds have
been equipped with robotic manipulators (see, e.g., Fig 1.1 (a) and (g)), there is a distinct
gap in knowledge regarding the planning and control algorithms for quadrupedal robots col-
laborating with one another and with humans. In particular, collaborative loco-manipulation
between multiple humans is simplified by the fact that we are able to perceive and under-

1
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stand intent and adapt to the proprioceptively perceived external wrenches induced through
collaboration. However, most applications of quadrupeds with manipulators broadly span
two situations. The first is quadrupeds collaborating with a human in simplified scenarios
wherein the person moves slowly and adapts to the motions of the robot to ease the interac-
tion forces [7]. While this is a notable first step toward adequate collaboration with humans,
forcing the human in the loop to react to and compensate for the robots movements is not
ideal. Furthermore, unlike [7], most robotic arms that are lightweight and low cost do not
have force measurements, which significantly inhibits robust control methods. This could also
require very sophisticated estimation methods to determine the interaction wrench, which
is particularly difficult in that most of the current state-of-the-art estimation techniques are
not suitable for the hybrid nature of the floating base of quadrupeds subject to potentially
large impulsive forces at impact. The latter situation is a single quadruped performing loco-
manipulation, thereby eliminating inter-system wrenches. I.e., a single quadruped picking
up an object for transport. In this case, the payload is often considered a disturbance and
is not considered directly in the control law. While this has been shown to work well in
practice for reasonably sized payloads, the control methodologies are not necessarily suffi-
cient when moving to multi-agent loco-manipulation. Since loco-manipulation algorithms
generally fall within these categories, this shows a fundamental gap in knowledge pertaining
to robust control and planning methods that consider interactions for multi-agent legged
robots, particularly in the cases where advanced sensors for force and torque measurements
are unavailable.

In this work, we aim to examine how legged robots can effectively work together to accom-
plish a task. In this regard, consider a colony of ants. While transporting an object, they
are able to collaborate, change configuration, and form complex structures allowing them
to accomplish tasks that would otherwise be impossible. Here we use this as motivation for
creating algorithms allowing multiple quadrupeds to work together in a constrained manner
while considering the interactions between them using data-driven approaches. This work
marks the first step toward enabling scalable loco-manipulation for robots, with an eventual
goal of intelligent self-configurable collaboration between robots and with humans, much like
how ants are able work together.

1.2 Scope, Goals, and Objectives

The overarching goal of this dissertation is to utilize and combine both physics-based
and data-driven techniques in a hierarchical planning and control framework to control con-
strained multi-agent systems applied to teams of quadrupeds. In particular, the goals of this
dissertation are enumerated as follows:

(1) Develop a computationally tractable nonlinear low-level controller that can is amenable
to multi-agent control and task balancing and is theoretically justifiable in the context
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Figure 1.1: (a) Spot (Boston Dynamics) equipped with a robotic arm [1], (b) Cheetah Mini
(MIT)[2], (c) A1 (Unitree) [3], (d) Cheetah 3 (MIT) [4], (e) Vision 60 (Ghost Robotics) [5],
(f) HyQ (Italian Institute of Technology) [6], (g) ANYmal (ANYbotics)[7] equipped with a
Kinova arm, (h) RHex (Boston Dynamics) [8].

of Hybrid Zero Dynamics.

(2) Development of reduced-order template models based on Behavioral Systems Theory
for quadrupedal locomotion. This template model is then validated by incorporating
it into a real-time predictive controller for online trajectory optimization. It is further
integrated with the previously developed low-level controller to form a hierarchical
control scheme.

(3) Create an extension of the data-driven predictive planner made for single agents to
teams of holonomically constrained quadrupeds. This new planner is further dis-
tributed such that the computational burden can be reduced significantly, allowing
this to be used in real time for trajectory planning.

(4) Provide rigorous simulation and experimental validation of the trajectory planner us-
ing data-driven template models on hardware for single and multi-agent systems. This
validation shows the robustness of the proposed hierarchical framework when subject
to disturbances and various unknown terrains, including unstructured indoor environ-
ments and different outdoor surfaces.

(5) Combine both data-driven and physics-based reduced order models to capture the
most important properties of both models. While the data-driven models have proven
to be successful when applied to multi-agent collaborative legged locomotion, we aim
to improve performance by augmenting traditional model-based approaches with Be-
havioural Systems Theory to improve the model while maintaining computational ef-
ficiency by again considering a distributed approach.
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Figure 1.2: Overview of R1.

(6) Provide additional simulation and experimental validation of the hybrid physics- and
data-based algorithm developed for a team of quadrupedal robots that are holonomi-
cally constrained. Similar to the previous case, various disturbances and terrains are
considered to evaluate the robustness of the approach.

These objectives are organized into the following specific research objectives:

(R1) Research Aim 1: Nonlinear Low-Level Control based on Quadratic Pro-
gramming, Virtual Constraints, and Control Lyapunov Functions: This research
aim develops, theoretically justifies, and experimentally implements an optimization-based
nonlinear control methodology for stabilizing quadrupedal locomotion. This framework uti-
lizes virtual constraints and Control Lyapunov Functions (CLFs) in the context of Quadratic
Programs (QPs) to robustly stabilize periodic orbits for hybrid models of quadrupedal robots
(see Fig. 1.2). Properties of the proposed QP are studied wherein sufficient conditions for
the continuous differentiability of the controller are presented. Additionally, this disserta-
tion addresses the robust stabilization problem of the orbits based on the Poincaré sections
analysis and input-to-state stability (ISS). The proposed controller is numerically and ex-
perimentally validated on the A1 quadrupedal robot with 18 Degrees of Freedom (DOF) to
demonstrate the robust stability of trotting gaits against external disturbances and unknown
payloads.

(R2) Research Aim 2: Data-Driven Template Model and Trajectory Planner
for a Single Quadruped: This research aim investigates a data-driven template model
for trajectory planning of dynamic quadrupedal robots. Many state-of-the-art approaches
involve using a reduced-order model, primarily due to computational traceability when com-
pared to the full-order nonlinear model. The spirit of the trajectory planning approach in
this work draws on recent advancements in the area of Behavioral Systems Theory (BST).
Here, we aim to capitalize on the knowledge of well-known template models to construct a
data-driven model, enabling us to obtain an information-rich reduced-order model without
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Figure 1.3: Overview of R2.

sacrificing tractability. In particular, this work considers input and output states similar to
that of the Single Rigid Body (SRB) model and proceeds to develop a data-driven repre-
sentation of the system, which is then used in a predictive control framework to create an
optimal trajectory for quadruped to follow. The optimal trajectory is passed to the low-level
and nonlinear model-based controller developed in (R1) to be tracked while considering the
full-order model. An overview can be found in Fig. 1.3. Experimental results are provided
to establish the efficacy of this hierarchical control approach for trotting and walking gaits
of a single high-dimensional quadrupedal robot on unknown terrains and in the presence
of disturbances. Furthermore, a comparison is provided to show the effectiveness of this
approach compared to a model-based approach, as well as an experiment showing the use
of this planner in tandem with the manufacturer’s built-in low-level controller to emphasize
the agnostic nature of the approach.

(R3) Research Aim 3: Extension of Data-Driven Template Models and Trajec-
tory Planners for Constrained Multi-Agent Systems: This research aim extends the
results of task (R2) by creating a planner that enables robust legged locomotion for com-
plex multi-agent systems consisting of several holonomically constrained quadrupeds. To
this end, we employ a methodology for trajectory planning based on BST to model the so-
phisticated and high-dimensional structure that includes the holonomic constraints induced
by the interconnection of subsystems. The resulting model is then used in tandem with
distributed control techniques such that the computational burden is shared across agents
while the strong coupling induced by interaction forces between agents is preserved. Finally,
this distributed model is framed in the context of a predictive controller, resulting in a ro-
bustly stable method for trajectory planning (see Fig. 1.4). This research aim is evaluated
in simulation with up to five agents to examine the scalability of the approach and is further
experimentally validated on three A1 quadrupedal robots subject to various uncertainties,



6 CHAPTER 1. INTRODUCTION

Figure 1.4: Overview of R3.

including payloads, rough terrain, and push disturbances.

(R4) Research Aim 4: Combining Physics-Based and Data-Driven Reduced-
Order Models for Constrained Multi-Agent Systems: the primary objective of this
research aim is to create a computationally tractable planner for constrained locomotion of
teams of robots when combining physics-based and data-driven methods during the trajec-
tory planning phase. In particular, the data-driven planners are shown to be effective but
lack several important properties, including sparsity of the optimization problem, which can
cause difficulties for practically robust and performant implementations of the algorithm.
For this reason, the aim of this section is to maintain practical performance by considering
traditional model-based techniques for each individual agent while modeling the interaction
wrenches using a data-driven approach, as shown in Fig. 1.5. In doing so, we are able to
maintain a high degree of sparsity, considerably decreasing the computation time for each
agent, particularly in the case that the algorithm is distributed similarly to the previous
research aim. This approach is finally validated at both the reduced- and full-order level in
simulation and is further evaluated on hardware to establish the efficacy of the approach.

1.3 Literature Review

The purpose of this section is to outline pertinent research in the areas of modeling, trajectory-
planning, and control of legged robots, various data-driven approaches and their applications
to robotics, and control of multi-agent systems.
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Figure 1.5: Overview of R4.

1.3.1 Full-Order Model of Legged Robots

The full-order modeling of a legged robot is slightly more complex than a general robotic
system. In particular, legged robots are hybrid in that they exhibit both continuous- and
discrete-time dynamics [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
30, 31, 32]. The system undergoes the continuous-time dynamics throughout a particular
domain, where a domain is defined by a particular set of contact points with the environ-
ment. Upon a new foot making or breaking contact, the system undergoes the discrete-time
dynamics [33]. More specifically, when a leg makes contact with the ground, the velocity of
the system is subject to a rapid change in velocity, which is encapsulated by the discrete-time
dynamics. However, the continuous-time domains, similar to most other robotic systems,
can adequately be described using the Euler-Lagrange method. A variety of approaches
have since considered the hybrid model, leading to incredibly robust locomotion even when
subject to uncertainty.

1.3.2 Nonlinear Controllers

In this section, we outline some of the many exceptional control methodologies that consider
hybrid models of legged locomotion. In particular, some of the state-of-the-art approaches
include controlled symmetries [34], hybrid reduction [35, 36], transverse linearization [37, 38],
and Hybrid Zero Dynamics (HZD) [21, 39, 40, 41, 42, 43, 44, 45]. Alternatively, some other
methods consider more traditional control techniques previously used in robotics for whole-
body task space control [46, 47], although these methods do not explicitly consider the
hybrid nature of locomotion in the development of the control law. Of these methods that



8 CHAPTER 1. INTRODUCTION

consider the hybrid nature of locomotion, only HZD and transverse linearization are able to
directly consider the general case of underactuation. This does not necessarily pose an issue
depending on the robot and the gait considered. For example, some bipeds with non-trivial
feet are fully actuated, and quadrupeds are fully actuated when at least two legs are on the
ground. Although, this does not necessarily mean that the contact Jacobian will be full rank,
which could still prove to be problematic for some approaches. However, having the ability
to operate in underactuated configurations, even for fully actuated systems, can introduce
more natural and dynamic motions.

In this work, we primarily focus on the HZD methods for the development of nonlinear
low-level controllers. Under this methodology, the limbs are coordinated through the use of
holonomic kinematic constraints, generally referred to as Virtual Constraints (VCs) [12, 40].
These virtual constraints can be effectively tracked through the use of Input-Output (I-O)
feedback linearization [48]. Furthermore, VCs have been used in a variety of contexts for
legged locomotion, including both bipeds [23, 29, 40, 41, 44, 49, 50, 51, 52, 53, 54] and
quadrupeds [43, 55, 56, 57, 58, 59, 60, 61]. In addition to legged robots, VCs have been
successfully implemented for both prostheses and exoskeletons [62, 63, 64, 65, 66, 67, 68],
which demonstrates the versatility of the approach to a variety of applications.

While the HZD method has been very successful, the method traditionally requires offline
computations for trajectory generation. In the early applications, the trajectory of the VCs
were created using a Nonlinear Programming (NLP) problem [29, 69, 70, 71, 72, 73, 74]
using existing solvers. These methods result in VCs that produce a stable periodic orbit
for locomotion. Most of these methodologies require simulating a set of VCs forward in
time to determine if they produce a stable orbit, making them unrealistic for real-time
planning due to high computational demand [29, 75]. Using offline optimization for VCs has
resulted in stable locomotion [29, 58, 75, 76, 77] that has proven to be stable even in the
presense of some degree of uncertainty, but does not consider environmental factors or gait
initiation and termination. Therefore, it is less desirable for robust locomotion subject to
considerable uncertainty and disturbances. This motivates the development of hierarchical
control methodologies and computationally tractable planners such that HZD methods can
be used adequately in real time.

Finally, HZD methods have the possibility of becoming numerically unstable in some sce-
narios. In particular, this method often relies on I-O linearization, which requires inverting
a decoupling matrix. In the case of legged locomotion, this matrix is often ill-conditioned—
and, in some situations, singular or otherwise not invertible. For this reason, the HZD
methods have often been combined with computationally tractable QP in order to overcome
these issues [41, 58, 60, 61, 78, 79, 80, 81]. The I-O linearization is used as a constraint in the
QP with the addition of a defect variable, thereby bypassing many of the potential numerical
issues as will be discussed in greater detail in Chapter 2. This further allows one to create
gaits that are overactuated, ensure that Ground Reaction Forces (GRFs) and torques are
feasible, and impose Control Lyapunov Function (CLF) conditions on the control law for
further theoretical guarantees [41, 78, 79, 80, 81, 82]. The inclusion of a CLF is particularly
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interesting in that it can provide a dynamic balance between conflicting goals of different
tasks and has the potential to create more natural motions during loco-manipulation [78].
When formulated in a centralized manner, the CLF conditions can also provide theoretical
guarantees regarding the interaction between different subsystems [82]. While this provides
an interesting potential avenue for collaborative legged locomotion, centralized control laws
tend not to be scalable to large groups of robots, making the method intractable for large-
scale multi-agent systems. We further suppose that it is more valuable to consider the
multi-agent interactions at the planning level to avoid abstraction and computational issues
at the low-level of the control scheme.

1.3.3 Model Predictive Control

As an alternative to nonlinear controllers, a significant amount of research has been con-
ducted regarding the use of linear Model Predictive Control (MPC) in the context of legged
robots [57, 61, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92]. MPC controllers usually run at a slower
rate (50−500 Hz) and act primarily as a trajectory planner. The resulting trajectory is then
tracked using a lower-level controller, ranging from simple Jacobian mappings to sophisti-
cated control methodologies such as those presented above. Unlike the nonlinear control
methodologies presented in the previous section, most of the MPC approaches do not use
full-order kinematics or dynamics and instead require a reduced-order model of some kind.
Some notable exceptions include [91, 92], but in this work, we solely focus on methods that
utilize reduced-order models.

Inverted Pendulum

The Linear Inverted Pendulum (LIP) model is among the older reduced-order models but
is still used and researched primarily due to its successful applications and simplicity [86]

Figure 1.6: Representation of the stan-
dard LIP model.

(see Fig. 1.6). The traditional LIP model consid-
ers the body of a robot as a point mass located at a
constant height above the ground and states that the
Center of Mass (COM) evolves in the transverse plane
according to inverted pendulum dynamics. In or-
der to use this model successfully for locomotion, one
must consider the Zero Moment Point (ZMP). In par-
ticular, stable locomotion dictates that the COM and
Center of Pressure (COP) trajectories must evolve in
a manner such that the COP remains within the con-
vex hull formed by the contacting feet at all times.
While not particular to the LIP model, there is an
additional constraint that the GRF must remain fea-
sible at all times, where this can be described by the net GRF in the case of multiple
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contacting legs. When combined with MPC techniques, the LIP model is able to produce
stable trajectories for robots in a computationally tractable manner. This simple but effec-
tive model has been implemented on multiple robots showing the versatility of the approach
[57, 83, 84, 85, 86, 93, 94]. One of the benefits of this model is that it can be directly
added to a MPC without additional linearization or model abstraction, aside from the con-
stant height assumption. However, due to the ZMP requirement, the standard LIP model
produces trajectories that are generally quasi-static. While the results are stable, dynamic
legged locomotion is effectively encapsulated by a series of successive controlled “falls” that
result in a stable periodic orbit for the system. Therefore, in order to obtain dynamic and
agile locomotion, the COP must leave the support polygon for some period of time. The LIP
model is further restrictive since it assumes a constant height and constant lumped mass and
inertia.

A close relative to the LIP model, namely the Spring Loaded Inverted Pendulum (SLIP)
model [95], has also been used in various applications. Although the SLIP model retains
many of the desirable properties of the LIP model, it is nonlinear. The nonlinearity of the
model comes from the fact that the COM can oscillate subject to a spring, which better
encapsulates the nature of locomotion, particularly for bipeds. This is beneficial in that it
often leads to more dynamic and energy-efficient gaits, but the downfall is that it requires
successive linearization or the use of Nonlinear MPC (NMPC). In turn, this leads either
to further model abstraction or an increased computational burden. Still, researchers have
obtained very good results with this model [22, 95, 96, 97, 98]. One additional concept that
extends the LIP model is that of the Divergent Component of Motion (DCM) [99, 100, 101,
102]. While the LIP model only captures the COM evolving in the transverse plane, the
DCM is effectively the LIP model in 3 dimensions. Unlike the SLIP model, the DCM still
remains linear and can be integrated directly with standard MPC formulations subject to
additional decision variables and constraints when compared to the LIP.

Even though all of the above models have proven to be successful for general locomotion, they
all share one considerable disadvantage in the context of collaborative legged locomotion:
they do not consider moments about the COM. More specifically, external forces acting on
the COM can be considered adequately, but applied torques must be neglected [103, 104].
Furthermore, the forces applied externally do not always have a line of action passing through
the center of mass. Therefore, they induce a moment on the body that cannot be considered
during trajectory planning. This poses an issue and implies that the Inverted Pendulum
(IP) models will be insufficient in the context of this work as we aim to create planners that
can correctly consider the entire interaction wrench.

Single Rigid Body

More recently, the legged locomotion community has begun to adopt the Single Rigid Body
(SRB) model [4] (see Fig. 1.7). Using this model, a robot is approximated only by its trunk
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and is propagated through space by forces acting on the system some distance away from
the COM. This model has been used in a large portion of the literature on legged robots
and has produced many successful implementations both in simulation and on hardware
[4, 89, 90, 105, 106, 107, 108].

There are numerous advantages to using this model, particularly in that it is amenable
to dynamic locomotion, and it can consider torques induced about the center of mass in-
nately. In addition, contrary to the IP models, the inputs to the SRB model are the
GRFs. Using the GRFs as inputs is extremely beneficial since it is then simple to con-
strain the GRF on each leg such that it always falls within the friction cone, as opposed
to the IP methods wherein the best one can achieve is to consider the net force. However,
one difficulty is that it is a nonlinear model and also has a rotation matrix as a state of
the system. When used in tandem with NMPC, this does not necessarily pose an issue,
but it is often desirable to cast planning and control problems into the form of a con-
vex QP for computational speed. Furthermore, a strictly convex QP is also guaranteed to
have a single solution, which is also desirable. For this reason, it is common to linearize
the model in a successive manner using the small angle approximation [4] or variational-
based linearization [89, 90]. Both methods have proven to be extremely robust on vari-
ous hardware platforms, primarily in the context of quadrupedal locomotion. It is worth
mentioning that the variational approaches have been used more when considering very

Figure 1.7: Representation of the SRB
model. The blue arrows represent the
GRF, and the translucent bodies (the
legs) are neglected in the model.

dynamic motions. This is because variational-based
linearization does not suffer from singularities when
passing through angles that would traditionally re-
sult in gimbal lock. This could also be avoided by
using a quaternion-based approach as has been done
on drones [109], but using an Euler representation is
still far more common [110]. One additional concern is
that the SRB model does not consider the mass of the
legs of the robot. When using small robots such as A1
and Mini Cheetah (see Fig. 1.1), the mass of the legs
is very small compared to that of the trunk. There-
fore, it is reasonable to assume the legs are massless
for these small-scale quadrupeds. However, for larger
robots performing dynamic motions, such as Vision60
and Anymal, the mass of the legs play a more con-
siderable role in the overall dynamics of the system. For this reason, some researchers have
adopted the use of gravity compensation for the legs to somewhat mitigate the problem
[89, 111], although it would be desirable to consider them in some manner while planning if
the mass of the legs proves to be considerably impactful on the overall system performance.
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1.3.4 Multi-Agent Planning and Control

A considerable amount of research has been conducted on multi-agent systems, including
UGVs [112, 113, 114], UAVs [115, 116, 117, 118, 119], and various other applications like
cooperative manipulation [120, 121]. When considering the formation control problem of
multi-agent systems, it is often necessary to use a reduced-order model, similar to that which
is done by the legged locomotion community when utilizing MPC. However, it is common in
the context of formation control to consider the use of a kinematic or kino-dynamic model
[117, 122, 123, 124, 125], where both kinematics and dynamics are considered to some degree.

Using a reduced-order model is a considerable benefit in terms of computational burden,
particularly in the case of centralized control and planning for many agents. There are
several very common models used for navigation, including the single integrator, double
integrator, and unicycle models, in order of increasing complexity [117, 123, 124, 126].
These methods work well when the systems are not constrained to one another, particu-
larly in the case of inherently stable systems such as wheeled vehicles. When moving to
more elaborate unstable systems such as drones and quadrupeds, these models become less
illustrative of the actual motions exhibited by the system. Fortunately, in the case that the

Figure 1.8: Example of a constrained
group of quadrupeds.

trajectory can be tracked sufficiently well by a low-
level controller, theoretical guarantees can still be
made about the system as a whole [126]. In this sense,
using a reduced-order kinematic model may not rep-
resent the system perfectly, but the analysis is simpli-
fied and formal guarantees regarding the stability of
the system are still possible. Finally, kinematic mod-
els are not amenable to considering external wrenches
applied to the system. This is a particular issue when
dealing with holonomically constrained multi-agent
systems (see, e.g., Fig. 1.8) with considerable inter-
action forces occurring between agents. In fact, very
little research has been conducted on trajectory plan-
ning for robotic systems subject to holonomic constraints during collaboration and formation
control. This is particularly the case for systems that are inherently unstable mobile robots,
such as drones and quadrupeds, and those that exhibit strong interaction forces. However, a
few recent and notable exceptions include [103, 127, 128], both of which are model-based. In
particular, [127] considers a linearization approach to consider the interaction forces, while
[128] utilizes a NMPC formulation as opposed to linearizing.

It is also worth discussing different control methodologies for multi-agent systems. In par-
ticular, multi-agent control has been accomplished using Control Barrier Functions (CBFs)
[129, 130, 131, 132, 133, 134], artificial potential fields [135, 136], game theory [137, 138, 139,
140, 141, 142], and reinforcement learning [143, 144, 145] to name a few. Of these methods,
the use of CBFs is becoming increasingly common. This is partly due to the fact that they
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are typically simple to implement and theoretically justify. In particular, the CBF enforces
that each agent stays within user-defined admissible sets. In addition, CBFs can be used to
accomplish other tasks as well, such as collision avoidance between agents and environmental
obstacles. CBFs also have a large number of similarities to potential fields, making them
an attractive choice for planning [146]. Another conceptually similar methodology to CBFs
is funnel control [147]. Using funnel control, one is able to restrict the output of a system
to a time-varying set, where that set can converge over time to the desired output, provid-
ing considerably more flexibility when compared to CBFs. Furthermore, restrictions can be
placed on the transient dynamics as well. While this method has not gained considerable
traction in robotics, the theory is well-developed and has been used in several applications
for multi-agent systems, particularly in recent years [148, 149, 150]. On the other hand, game
theory takes a very different approach compared to CBFs and funnel control. From a game
theoretic perspective, it is beneficial to treat each agent (player) as either a teammate with
which to cooperate or an adversary with which to compete. In formation control, the former
is more important. Each player is responsible for accomplishing a task—for example, track-
ing a forward velocity—while the group is responsible for maintaining formation. Consider
the scenario where an agent is falling behind in the formation or is perturbed considerably.
When using a CBF, it becomes the sole responsibility of the perturbed agent to come back
into formation. In contrast, a game theoretic algorithm would allow other agents to move
in a manner to help the perturbed agent to get back into formation, while also considering
their own goals. In this sense, game theory provides a more holistic view of the group to
accomplish a task. However, real-time implementation of game theoretic algorithms has
been a barrier to the wide-scale adoption of the methods.

Lastly, when considering many agents, the system is high-dimensional, which also motivates
distributed approaches when possible [60, 118, 127, 136, 151, 152, 153, 154, 155, 156, 157,
158, 159, 160, 161, 162]. These methods reduce the computational burden for controllers
and planners, but they have also not been readily extended to legged robotic systems with
high-dimensional hybrid nonlinear dynamics and unilateral constraints. Furthermore, many
methods used for distributed systems assume weak interactions between the agents [155, 156,
157, 158, 159, 160, 161], which is not the case in this work since the robots are physically
constrained to one another as opposed to enforcing fictitious virtual constraints to maintain
a formulation. There has been limited work that directly considers the nonlinear interactions
between subsystems in a distributed approach [60, 127, 128], which demonstrates the gap in
knowledge pertaining to systems with large coupling terms.

1.3.5 Data-Driven Methods

Data-driven methods are becoming more popular as systems become increasingly complex
[163]. This motivates their use in multi-agent systems, especially in the case where the
individual agents are dynamically complex, such as quadrupeds. Even though individual
systems can be modeled adequately, their combined dynamics make the system consider-
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ably more sophisticated, and an effective and efficient reduced-order model has yet to be
determined. One such method recently popularized in the robotics community is reinforce-
ment learning [61, 164, 165, 166]. This method of learning has been used for collaborative
locomotion among multiple quadrupeds [167] but takes considerable time and computation
power. Furthermore, reinforcement learning provides little intuition as to the inner workings
of the result. In this work, we pursue a different avenue that is not based on learning and
instead considers a direct system identification method.

Here, we consider the use of data-driven methods in the context of Behavioral Systems The-
ory (BST). This methodology parameterizes a Linear Time-Invariant (LTI) system directly
in terms of its measured trajectories [168, 169, 170]. BST, when used in a predictive control
or planning framework, is usually referred to as Data-Driven Predictive Control (DDPC) or
Data-Enabled Predictive Control (DeePC) and has lately become of great interest to the
robotics community [154, 171, 172, 173, 174, 175, 176, 177]. Recently, extensions have been
made to use such methods for certain types of nonlinear systems [178] and linear parameter
varying systems [179], but there have yet to be any proofs extending to a broad class of gen-
eral nonlinear systems. There have also been advances in using these methods for stochastic
implementations, and in particular, there have been experimental validations for nonlinear
systems, even though the theory does not directly apply [154, 172, 173, 174, 177]. We further
note that there have been extensions to hybrid classes of systems as well [180, 181], but none
of these methods explicitly apply to nonlinear hybrid systems, nor are they concerned with
periodic orbits, as is the case when dealing with quadrupeds. To the best of the authors’
knowledge, there have not been implementations for multi-agent systems using BST prior
to this work. We further note that the extension to collaborative legged locomotion intro-
duces many difficulties, including the hybrid nonlinear nature of legged locomotion and the
inclusion of unilateral constraints, while also requiring that the GRF is feasible for each leg
relative to both the friction cone and the max force that the full-order system is able to
apply.

1.4 Relevant Publications

As part of this research, two journals and a conference paper have been written, includ-
ing publications in IEEE Robotics and Automation Letters (RAL), IEEE Control Systems
Letters (LCSS), and IEEE International Conference on Robotics and Automation (ICRA).
In addition, [J1] was presented at the IEEE American Controls Conference, and [J2] was
presented at the IEEE International Conference on Intelligent Robots and Systems (IROS).
It is also worth mentioning that [C1] has been nominated for the Outstanding Paper Award
in Multi-Robot Systems for ICRA 2023. Chapters 2, 3, and 4 are primarily composed of the
material found in [J1], [J2], and [C1].
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[J1] R. T. Fawcett, A. Pandala, A. D. Ames, and K. Akbari Hamed, “Robust
stabilization of periodic gaits for quadrupedal locomotion via QP-based virtual
constraint controllers,” IEEE Control Systems Letters, pp. 1736-1741, 2021

[J2] R. T. Fawcett, K. Afsari, A. D. Ames, and K. Akbari Hamed, “Toward a
data-driven template model for quadrupedal locomotion,” IEEE Robotics and
Automation Letters, vol. 7, no. 3, pp. 7636–7643, 2022.

[C1] R. T. Fawcett, L. Amanzadeh, J. Kim, A. D. Ames, and K. Akbari Hamed,
“Distributed Data-Driven Predictive Control for Multi-Agent Collaborative
Legged Locomotion,” IEEE International Conference on Robotics and Automa-
tion, 2023.
Finalist for the Outstanding Paper Award in Multi-Robot Systems

In addition to the publications listed above, I have also contributed to several other journal
and conference publications throughout my time as a graduate student in IEEE Transac-
tions on Robotics (TRO, in review), ASME Journal of Dynamic Systems, Measurement,
and Control (DSMC), IEEE Robotics and Automation Letters (RAL), IEEE Control Sys-
tems Letters (LCSS), and IEEE International Conference on Intelligent Robots and Systems
(IROS). Furthermore, in what follows, [J4] and [J5] were presented at the IEEE Interna-
tional Conference on Intelligent Robots and Systems (IROS) and the IEEE Conference on
Decision and Control (CDC), respectively, in addition to the primary publication. Finally,
[J6] received the 2022 ASME DSCD Rudolf Kalman Best Paper Award. The additional
publications are provided as follows:

[J3] J. Kim, R. T. Fawcett, V. R. Kamidi, A. D. Ames, and K. Akbari Hamed, “Layered
Control for Cooperative Locomotion of Two Quadrupedal Robots: Centralized and
Distributed Approaches,” IEEE Transactions on Robotics, In Review, March 2023.

[J4] A. Pandala, R. T. Fawcett, U. Rosolia, A. D. Ames, and K. Akbari Hamed, “Robust
Predictive Control for Quadrupedal Locomotion: Learning the Gap between Reduced-
and Full-Order Models,” IEEE Robotics and Automation Letters, Vol. 7, Issue 3, pp.
6622-6629, July 2022.

[J5] V. R. Kamidi, J. Kim, R. T. Fawcett, A. D. Ames, K. Akbari Hamed, “Distributed
Quadratic Programming-Based Nonlinear Controllers for Periodic Gaits on Legged
Robots,” IEEE Control Systems Letters, vol. 6, pp. 2509-2514, 2022

[J6] R. T. Fawcett, A. Pandala, J. Kim, and K. Akbari Hamed, “Real-time planning and
nonlinear control for quadrupedal locomotion with articulated tails,” ASME Journal
of Dynamic Systems, Measurement, and Control, Vol. 143, Issue. 7, pp. 071004-1-
071004-15, Jul, 2021.
This work received the 2022 ASME DSCD Rudolf Kalman Best Paper
Award



16 CHAPTER 1. INTRODUCTION

[C2] J. Martin, V. R. Kamidi, A. Pandala, R. T. Fawcett, and K. Akbari Hamed, “Ex-
ponentially stabilizing and time-varying virtual constraint controllers for dynamic
quadrupedal bounding,” IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 3914-3921, Las Vegas, NV, October 2020

1.5 Dissertation Outline

This dissertation is broken down into three primary parts. In particular, Part I consists of
research task (R1) and details the low-level torque controller that is used in the overarching
hierarchical framework that is laid out in Part II. More specifically, Part II focuses on
research tasks (R2) and (R3), which outlines a tractable data-driven path planner for
single and multi-agent quadrupedal systems. The last technical portion of this dissertation,
Part III, discusses research task (R4) and provides the experimental validation of the hybrid
physics- and data-based method for constrained collaborative legged locomotion. Finally,
the dissertation is brought to a close in Chapter 6 with a summary of the work followed by
directions for future research.



Part I

Nonlinear Whole-Body Motion
Control
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Chapter 2

QP-Based Virtual Constraint
Controllers with Lyapunov Functions

2.1 Introduction and Motivation

One major drawback of QP-based nonlinear control approaches is the possible lack of con-
tinuous differentiability (i.e., C1) of the feedback laws with respect to the system’s state
[182]. While a lack of C1 continuity does not imply that the control law will not provide
adequate performance, the analysis can potentially become more difficult. Practically, the
stability analysis of periodic locomotion can be checked via the eigenvalues of the Poincaré
map [40, 183] which requires C1 continuity of the feedback laws with respect to the state.
Hence, the lack of smoothness of the feedback laws prohibits the use of the powerful Poincaré
sections analysis tools to study the stability of gaits. This motivates the creation of a high-
performance control law that is C1.

The overarching goal of this chapter is to present a continuously differentiable and QP-based
nonlinear controller, based on virtual constraints and Control Lyapunov Functions (CLFs),
to robustly stabilize hybrid periodic orbits for quadrupedal locomotion. The objectives and
contributions of this work are as follows. We study the properties of the proposed QP-
based nonlinear controller and present sufficient conditions under which the feedback laws
become C1. We investigate conditions under which the orbit is invariant for the closed-
loop hybrid system. The robust stability properties of the periodic orbit under the proposed
nonlinear controller are studied via the Poincaré sections analysis and input-to-state stability
(ISS). We numerically and experimentally validate the proposed nonlinear controller on the
advanced A1 quadrupedal robot with 18 DOFs to demonstrate the stability and robustness
of trotting gaits against unknown payloads and external disturbances. To the best of the
authors’ knowledge, this is the first time a full-order HZD controller with exact feedback
linearization has been implemented on quadrupedal robots. The use of a model-based CLF
for locomotion has only been validated on bipedal platforms [41], making this the first
application of a model-based CLF to quadrupedal locomotion, particularly when used in
the HZD framework. In this work, the controller developed in this chapter will generally be
referred to as the low-level controller. The majority of the contents of this chapter are taken
from our previous work [43].

Previous work in the HDSRL lab [57] has used QP-based nonlinear controllers for numerical

18
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simulations of quadrupedal locomotion without studying the C1 continuity, invariance of the
orbit, and robust stability. Furthermore, previous work [184] had conducted a hardware
implementation of a QP-based virtual constraint controller subject to a Lyapunov function,
but this work lacked the theoretical foundation presented here. The current work techni-
cally addresses these properties while experimentally evaluating the control framework on
hardware. This work also differs from [182] and [82] in that the proposed control framework
satisfies the C1 continuity, whereas the controller in [182] only meets the continuity condi-
tions but not the C1 continuity, and [82] uses the CLF condition to parameterize the rigid
coupling between two subsystems for distributed control of a quadruped without addressing
any continuity of the control law. As a brief aside, this dissertation focuses on hierarchi-
cal control frameworks for interconnected systems, as will be discussed more in the latter
chapters. Although we address the interaction forces between agents at the planning level,
it would be an interesting line of research to take an approach similar to that of [82] to
decouple collaborative systems through the use of CLFs and implement the control at the
low-level only.

The content of this chapter is primarily comprised of material from [43].

2.2 Hybrid Model of Locomotion

The objective of this section is to address hybrid dynamical models of quadrupedal lo-
comotion. We consider floating-based models for general quadrupedal robots whose legs
end at point feet. The generalized coordinates of the robot are assumed to be denoted by
q ∈ Q ⊂ Rnq , where Q represents the configuration space for some positive integer nq rep-
resenting the dimensions of the generalized coordinates. The state vector can be taken as
x := col(q, q̇) ∈ X ⊂ Rn, in which X := TQ denotes the state space with n = 2nq. In
addition, the joint-level torque inputs are shown by τ ∈ T ⊂ Rm, where T is a closed and
convex admissible set of inputs for some m < nq. The equations of motion can be described
by the following ordinary differential equations (ODEs)

D(q) q̈ +H (q, q̇) = B τ +
∑
ℓ∈G

J⊤
ℓ (q)λℓ, (2.1)

where D(q) ∈ Rnq×nq denotes the symmetric and positive definite mass-inertia matrix,
H(q, q̇) ∈ Rnq represents the Coriolis, centrifugal, and gravitational terms, and B ∈ Rnq×m

denotes the input distribution matrix. In addition, G represents the index set of ground con-
tact points, Jℓ(q) := ∂pℓ

∂q
(q) ∈ R3×nq denotes the Jacobian matrix at the contact point ℓ ∈ G,

pℓ(q) ∈ R3 represents the Cartesian coordinates of the contact point, and λℓ ∈ R3 is the
corresponding GRF. By defining λ := col{λℓ | ℓ ∈ G}, the state equation can be expressed as

ẋ = f(x) + g(x) τ + w(x)λ (2.2)
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subject to the holonomic constraints p̈ = 0, where p := col{pℓ | ℓ ∈ G} represents the
Cartesian coordinates of all contact points, which implies rigid contact and no foot slippage.
More formally, we have p̈ℓ = Jℓ(q) q̈ +

∂
∂q

(Jℓ(q) q̇) q̇ = 0 for all ℓ ∈ G. We remark that this
model is valid if λℓ ∈ FC for all ℓ ∈ G, where

FC := {col(λx, λy, λz) |λz ≥ 0,±λx ≤ µ√
2
λz,±λy ≤

µ√
2
λz}

denotes the friction cone for some friction coefficient µ.

Remark 2.1. We remark that one can eliminate the Lagrange multipliers (i.e., GRFs) λ
from the ODE (2.2) to satisfy the algebraic holonomic constraints p̈ = 0. However, this can
result in complicated continuous-time dynamics. In this case, we would need to recompute
λ to address the feasibility conditions in the QP of Section 2.3. This motivates us not to
eliminate λ. In addition, we have observed that keeping the Lagrange multipliers in the ODE
while considering the holonomic constraints for synthesizing the optimal control problem can
result in computationally tractable QPs. This will be clarified more in Sections 2.3 and 2.5.

Quadrupedal locomotion can be expressed by multi-domain hybrid systems. Using [40,
Theorem 4.3], the stability analysis of periodic orbits for multi-domain hybrid models can
be reduced to that of single-domain hybrid models. In this approach, the reset map for the
equivalent single-domain hybrid system can be expressed as the composition of the flows
of the remaining continuous-time domains and discrete-time transitions in the order they
are executed in the multi-domain hybrid systems’ cycle. In particular, assuming domain
1 is the main continuous-time domain, the equivalent reset law can be expressed as ∆ :=
∆N→1◦FN ◦· · ·◦∆2→3◦F2◦∆1→2, where N denotes the number of domains and Fi and ∆i→j

represent the flow of the continuous-time domain i and the reset law during the discrete-time
transition i→ j [33], respectively, for all i, j ∈ {1, · · · , N} [55, Sec. IV]. In this chapter, we
study periodic orbits corresponding to double-domain trotting gaits, which have left-right
symmetry. Using [53, Remark 11], one can apply symmetry to the controller of domain 1
to construct the controller for domain 2. Hence, without loss of generality, we will focus on
single-domain hybrid models of locomotion, which can be described as follows:

Σ :


ẋ = f(x) + g(x) τ + w(x)λ, x ∈ X
p̈ = 0

x+ = ∆(x−), x− ∈ X ∩ S ,
(2.3)

where S represents the guard of the hybrid system, referred to as the switching manifold.
The state solutions of Σ undergo an abrupt change according to the C1 reset law x+ = ∆(x−)
when they hit the guard S .

Assumption 2.2 (Periodic Orbit). There exists a period-one orbit O for the system Σ that
is transversal to the switching manifold S . In particular, O := {φ⋆(t) | 0 ≤ t < T} for some
periodic state solution φ⋆(t) and some fundamental period T > 0. Furthermore, the orbit
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intersects the switching manifold in exactly one point, i.e., {x⋆} := O ∩ S is a singleton,
where O denotes the set closure of O.

2.3 QP-Based Nonlinear Controller with Control Lya-
punov Function

This section presents a nonlinear control scheme, based on QP, virtual constraints, and
CLFs, for whole-body motion control and robust stabilization of the orbit O. The properties
of the QP-based nonlinear controller are studied to show that it becomes C 1 on an open
neighborhood of the orbit under reasonable sufficient conditions. Furthermore, we consider
a set of holonomic virtual constraints as output functions y := h(x) ∈ Rm to be imposed by
the action of a feedback controller.

Assumption 2.3 (Output Properties). The output function y(x) is assumed to be smooth
(i.e., C∞) with uniform relative degree 2 [48] with respect to the control input τ in (2.3) on
an open neighborhood of the orbit O. In addition, y(x) vanishes on O, that is, y(x) = 0 for
all x ∈ O.

Differentiating the output function y(x) along the continuous-time dynamics (2.2) and setting
the result equal to the desired output dynamics to solve for τ yields

ÿ = LgLfy τ + LwLfy λ+ L2
fy = −KP y −KD ẏ + v, (2.4)

where “L” represents the Lie derivative, KP and KD are positive definite matrices, and
v ∈ Rm is an auxiliary input to be discussed later. We remark that in (2.4), ÿ is an
affine function of both the inputs τ and the GRFs λ, and LgLfy and LwLfy denote the
corresponding decoupling matrices. The right-hand side term −KP y −KD ẏ + v represents
the desired output dynamics that we ultimately want to achieve by solving for (τ, λ). By
defining η := col(y, ẏ) ∈ R2m, the output dynamics (2.4) can be written in a compact form
as follows:

η̇ = f̄(η) + ḡ(η) v := F η +Gv, (2.5)
where

F :=

[
0 I

−KP −KD

]
∈ R2m×2m, G :=

[
0
I

]
∈ R2m×m.

Since F is Hurwitz, for every positive definite Q = Q⊤, there exists a unique and positive
definite P = P⊤ such that F⊤P + P F = −Q. A function Vε(η) is said to be a rapidly
exponentially stabilizing CLF (RES-CLF) for (2.5) if there are positive scalars c1, c2, c3 > 0
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such that for all 0 < ε < 1 and η ∈ R2m, the following conditions are met

c1∥η∥2 ≤ Vε(η) ≤
c2
ε2
∥η∥2

inf
v

{
Lf̄Vε(η) + LḡVε(η) v +

c3
ε
Vε(η)

}
≤ 0. (2.6)

Following [41], Vε(η) := η⊤Pε η is an RES-CLF for (2.5) with Pε := diag(1
ε
I, I)P diag(1

ε
I, I).

More specifically, we can show that the CLF condition can be expressed as the following
affine inequality in terms of v

V̇ε +
c3
ε
Vε = ψ0(x) + ψ1(x) v ≤ 0, (2.7)

where c3 := λmin(Q)
λmax(P )

, ψ0(x) := η⊤(F⊤Pε + Pε F + c3
ε
Pε) η, and ψ1(x) := 2η⊤PεG. From

Assumption 2.3, η = 0 for all x ∈ O, and hence, the inequality (2.7) is reduced to the trivial
case of 0 v ≤ 0 on the orbit.

Analogous to (2.4), the algebraic holonomic constraints arising from the stationary contacts
of the stance leg ends with the ground can be expressed as

p̈ = LgLfp τ + LwLfp λ+ L2
fp = 0. (2.8)

Assumption 2.4. The contact constraints are regular in that the square matrix LwLfp(x)
is full-rank for every x ∈ X .

We aim to solve for (τ, λ, v) that satisfy the output dynamics (2.4) and the contact condition
(2.8) while addressing the CLF condition (2.7) as well as the feasibility constraints τ ∈ T
and λ ∈ FC. For this purpose, we set up the following real-time strictly convex QP

min
(τ,λ,v,δ)

γ1
2
∥τ∥2 + γ2

2
∥λ− λd∥2 +

γ3
2
∥v∥2 + γ4

2
δ2

s.t. LgLfy τ + LwLfy λ+ L2
fy = −KP y −KD ẏ + v

LgLfp τ + LwLfp λ+ L2
fp = 0

ψ0 + ψ1 v ≤ δ

τ ∈ T , λ ∈ FC, (2.9)

where γ1, γ2, γ3, γ4 > 0 are weighting factors. The equality constraints of (2.9) correspond
to the I-O linearization (2.4) and rigid contact assumption (2.8). The CLF condition (2.7)
is then relaxed by introducing a defect variable δ ∈ R. Theorem 2.7 will show that this
relaxation would allow the C1 continuity of the optimal solution of the QP with respect to
x in an open neighborhood of the orbit O. The QP considers the feasibility condition of
the torque inputs and GRFs as inequality constraints. The cost function finally tries to find
the minimum 2-norm (minimum power) torques τ that impose the actual GRFs λ to follow
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a desired GRF profile λd(x) while reducing the magnitude of the defect variable δ and the
auxiliary input v. Note that in this work, we heuristically choose λd = 0 to try to minimize
the overall GRF. This may be sub-optimal in many cases but serves as a good test scenario
when there are optimal GRFs are not provided. The optimal GRFs could be determined
using a trajectory planner such as those considered later in this work or could be obtained
through offline optimization. The existence and uniqueness of the solution to this strictly
convex QP will be shown via Assumption 2.5 and Theorem 2.7.

For future purposes, the optimal solution of the QP (2.9) is denoted by (τ ⋆(x), λ⋆(x), v⋆(x), δ⋆(x))
and is parameterized by the state vector x. Furthermore, the closed-loop hybrid system can
be expressed as

Σcl :


ẋ = f cl(x), x ∈ X
p̈ = 0

x+ = ∆(x−), x− ∈ X ∩ S ,
(2.10)

where f cl(x) := f(x)+g(x) τ ⋆(x)+w(x)λ(x) is the closed-loop vector field. We remark that
λ(x) = λ⋆(x) as from (2.8), λ(x) can be uniquely computed based on τ ⋆(x).

2.3.1 Continuous Differentiability of the Feedback Controller

The QP in (2.9) can be expressed in a compact form as the following parameterized opti-
mization problem

P(x) :


min
ξ

J(ξ, x)

s.t. ρi(ξ, x) = 0, i ∈ Ieq := {1, · · · , neq}
ωj(ξ, x) ≤ 0, j ∈ Iineq := {1, · · · , nineq},

where ξ := col(τ, λ, v, δ) represents the decision variables to be determined. The Lagrangian
for P(x) is defined as

L(ξ, α, β, x) := J(ξ, x) +
∑
i∈Ieq

αi ρi(ξ, x) +
∑

j∈Iineq

βj ωj(ξ, x),

where α and β are the Lagrange multipliers corresponding to the equality and inequal-
ity constraints, respectively. A point (ξ⋆, α⋆, β⋆) satisfies the Karush-Kuhn-Tucker (KKT)
conditions for P(x0) if 1) ∂L

∂ξ
(ξ⋆, α⋆, β⋆, x0) = 0, 2) all equality constraints are met at

(ξ, x) = (ξ⋆, x0), 3) all inequality constraints are satisfied at (ξ, x) = (ξ⋆, x0), and 4)
βj ωj(ξ

⋆, x0) = 0 with βj ≥ 0 for all j ∈ Iineq (complementary slackness). A point (ξ⋆, α⋆, β⋆)
satisfies strict complementary slackness if there is not any j ∈ Iineq for which both βj = 0
and ωj(ξ

⋆, x0) = 0. A point (ξ⋆, α⋆, β⋆) is said to be regular if the gradients of the active
constraints of P(x0) are linearly independent.
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The point (ξ⋆, α⋆, β⋆) satisfies the second-order sufficient conditions of the QP P(x0) if a) the
KKT conditions are met, and b) the Hessian matrix meets the condition z⊤ ∂2L

∂ξ2
(ξ⋆, α⋆, β⋆, x0) z >

0 for all z ̸= 0 such that

(1) z⊤ ∂ρi
∂ξ
(ξ⋆, x0) = 0 for all i ∈ Ieq,

(2) z⊤
∂ωj

∂ξ
(ξ⋆, x0) = 0 for all j ∈ Iineq where β⋆

j > 0,

(3) z⊤
∂ωj

∂ξ
(ξ⋆, x0) ≤ 0 for all j ∈ Iineq where β⋆

j = 0.

Assumption 2.5. (Optimality on the Periodic Orbit): We suppose that, for all x0 on the
orbit O, the QP P(x0) is feasible and there exists a point (ξ⋆(x0), α⋆(x0), β

⋆(x0)) that satisfies
the second-order sufficient conditions. The point (ξ⋆(x0), α

⋆(x0), β
⋆(x0)) also satisfies the

strict complementary slackness for P(x0). We further suppose that the optimal control
and GRFs take values in the interior of the sets T and FC, that is, τ ⋆(x0) ∈ int(T ) and
λ⋆(x0) ∈ int(FC), where “int” represents the interior of a set.

Remark 2.6. Assumption 2.5 is not restrictive and states that the QP has a feasible solution
that satisfies the second-order sufficient conditions and complementary slackness for every
point on the desired orbit, which follows simply from the strict convexity of the problem. It
also states that the torques and GRFs corresponding to the desired trajectory remain in the
interior of the feasible sets, which can practically be met during trajectory optimization of the
desired periodic orbit O. In particular, the trajectory optimization problem for generating
O can be constrained by a conservative subset of the feasible sets T and FC such that the
desired orbit remains in the interior of the actual feasible sets T and FC at all times during
locomotion.

Theorem 2.7. (Existence, Uniqueness, and C1 Continuity of the Optimal Solution): Under
Assumptions 2.2-2.5, there exist an open neighborhood of the periodic orbit O, denoted
by N (O), and a continuously-differentiable function ξ⋆(x) := col(τ ⋆(x), λ⋆(x), v⋆(x), δ⋆(x)),
such that for all x ∈ N (O), ξ⋆(x) is an isolated optimal solution of the QP P(x).

Proof. Since f(x), g(x), w(x), and y(x) are smooth (i.e., C∞), the cost function J(ξ, x) and
constraints ρ(ξ, x) and ω(ξ, x) are smooth in x on an open neighborhood of the orbit. In
addition, J(ξ, x) and constraints ρ(ξ, x) and ω(ξ, x) are smooth in ξ. We next show that for
all x0 ∈ O, the optimal solution of P(x0), denoted by (ξ⋆, α⋆, β⋆), satisfies the regularity
condition. From Assumption 2.3, ÿ = 0 on the orbit. Hence, according to the output
dynamics (2.4), the optimal v value must be zero, i.e., v⋆ = 0. Since ψ0 = 0 and ψ1 = 0
on the orbit, the relaxed-CLF condition in (2.9) is reduced to 0 ≤ δ. According to the
positive term γ4

2
δ2 in the cost function, we can conclude that δ⋆ = 0. Hence, the relaxed

CLF condition, which is expressed as an inequality constraint, is indeed active on the orbit.
From Assumption 2.5, we also have that τ ⋆ ∈ int(T ) and λ⋆ ∈ int(FC). Consequently, the
feasibility constraints τ ∈ T and λ ∈ FC of the QP (2.9) are inactive on the orbit. We now
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study the rank of the gradients of the active constraints with respect to ξ = col(τ, λ, v, δ)
that is reduced to the following matrix on the orbitLgLfy(x0) LwLfy(x0) −I 0

LgLfp(x0) LwLfp(x0) 0 0
0 0 0 −1

 . (2.11)

By Assumption 2.4, LwLfp(x0) is full-rank, and hence, the gradient matrix in (2.11) has full
row rank for every x0 ∈ O. Thus, all sufficient conditions of Fiacco’s Theorem (see [185,
Theorem 2.1] or [182, Theorem 1]) are met, resulting in the existence, uniqueness, and C1

continuity of optimal solutions of the QP on an open neighborhood of the orbit O.

2.4 Robust Stability Analysis

The objective of this section is to address the robust stabilization problem of the periodic
orbit O based on the Poincaré sections analysis and ISS. We consider the closed-loop hybrid
model (2.10) subject to external disturbances during the continuous-time domain as follows:

ẋ = f cl(x) + a(x) d, (2.12)

where a(x) is a smooth function, and d is an external wrench (i.e., disturbance) defined by
a finite-dimensional set of parameters [183, Sec. II.C]. Typical examples include constant
disturbance inputs or splines whose parameters change from one domain to another. We
suppose that dk ∈ D represents the parameterization of the disturbance during the k-th
continuous-time domain, where D is a domain containing the origin. The evolution of the
perturbed hybrid system on the Poincaré section S can then be described by the following
discrete-time dynamics

xk+1 = R(xk, dk), k = 0, 1, · · · , (2.13)
where R : S×D → S represents the Poincaré return map parameterized by the disturbance
dk. To study the properties of the Poincaré map, we make the following assumption.

Assumption 2.8. We suppose that for all x ∈ O, the matrix

T (x) := LgLfy − LwLfy (LwLfp)
−1 LgLfp ∈ Rm×m

is full-rank.

Remark 2.9. Assumption 2.8 is not restrictive and is met inherently if the system is not
overactuated. In this work, we consider a trot gait that does not have an overactuated
continuous-time domain, so this assumption is satisfied. In the proof of Theorem 2.11, we
will show that this ensures the uniqueness of the torques corresponding to the periodic gait.
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Figure 2.1: Simulated and experimental data for a forward trot subject to a payload of 4.54
(kg). The joint phase plots are shown for the front right leg.

Definition 2.10. A fixed point x⋆ is said to be locally ISS (LISS) for (2.13), if there exists
ϵ > 0, a class KL function ϱ, and a class K function ϖ such that

∥xk − x⋆∥ ≤ ϱ(∥x0 − x⋆∥, k) +ϖ (∥d∥l∞) , ∀k = 0, 1, · · · ,

for all x0 ∈ S ∩Bϵ(x
⋆) and d ∈ Bϵ(0), where Bϵ(x

⋆) and Bϵ(0) are open ϵ-neighborhood balls
around x⋆ and 0, respectively, and ∥d∥l∞ represents the l∞-norm.

We are now in a position to present the following theorem to investigate the existence of a
fixed point and its LISS property for the Poincaré return map.

Theorem 2.11. (Invariance and Robust Stability): Under Assumptions 2.2-2.8, the follow-
ing statements hold.

(1) The orbit O is invariant under the flow of the closed-loop hybrid system in the absence
of the disturbance d. In particular, x⋆ is a fixed point for the Poincaré map in the
absence of d, that is R(x⋆, 0) = x⋆.

(2) If the eigenvalues of Π0 :=
∂R
∂x

(x⋆, 0) are strictly inside the unit circle, then x⋆ is LISS
for (2.13).

Proof. Part (1): From Assumptions 2.3 and 2.5 and the proof of Theorem 2.7, for every x ∈
O, the QP P(x) is feasible and the optimal v value is zero (i.e., v⋆ = 0). Hence, the equality
constraints are reduced to LgLfy τ + LwLfy λ+ L2

fy = 0 and LgLfp τ + LwLfp λ+ L2
fp = 0.

Eliminating the GRFs from these equations, we can conclude that

T (x) τ + L2
fy − LwLfy (LwLfp)

−1 L2
fp = 0. (2.14)

This, together with Assumption 2.8, implies that τ is a unique solution for this set of equa-
tions which coincides with the open-loop control input that generates the orbit. Hence, O
is invariant under the flow of the closed-loop hybrid dynamics.
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Figure 2.2: This experiment displays A1 trotting under the influence of both a 4.54 (kg)
payload (36% of the robot’s weight) and push disturbances. The quadruped was able to
resist these uncertainties and continue trotting. Videos of the experiments are available
online [9].

Part (2): Unlike [183], the closed-loop vector field is C1, but not twice continuously differen-
tiable (i.e., C2). Theorem 2.7 together with the transversality condition in Assumption 2.2
implies that R(x, d) is C1 with respect to (x, d) on an open neighborhood of (x⋆, 0). Since
Π0 is a Hurwitz matrix, for every Q0 = Q⊤

0 > 0, there is a unique P0 = P⊤
0 > 0 such that the

discrete-time Lyapunov equation Π⊤
0 P0 Π0 − P0 = −Q0 is satisfied. This shows zero-input

exponential stability and thereby zero-input asymptotic stability of the fixed point x⋆ for the
Poincaré return map. We can then conclude the desired local ISS property holds by invok-
ing [186]. More formally, we can choose the Lyapunov function W (x) := δx⊤P0 δx, where
δx := x − x⋆. From [19, Lemma 2], there are ϵ, ζ0, σ0 > 0 such that for all x ∈ S ∩ Bϵ(x

⋆)
and all d ∈ Bϵ(0) ⊂ D,

∆W := W (R(x, d))−W (x) ≤ −ζ0 ∥δx∥2 + σ0∥d∥2,

where Bϵ(x
⋆) and Bϵ(0) are open ϵ-neighborhood balls around x⋆ and 0, respectively. Since

we have
λmin(P0) ∥δx∥2 ≤ W (x) ≤ λmax(P0) ∥δx∥2,

we may conclude that Wk+1 ≤ ν Wk + σ0∥dk∥2, where ν := 1− ζ0
λmax(P0)

< 1. For d = 0, this
inequality is reduced to Wk+1 ≤ ν Wk, and hence, ν ∈ [0, 1). We can show that

Wk ≤ νkW0 + σ0

k−1∑
j=0

νk−1−j∥dj∥2 ≤ νkW0 +
σ0

1− ν
d2max,

where dmax := supk≥0 ∥dk∥. This latter inequality together with the property
√
a+ b ≤√

a+
√
b results in

∥xk − x⋆∥ ≤

√
λmax(P0)

λmin(P0)
∥x0 − x⋆∥ (

√
ν)k +

√
σ0

λmin(P0) (1− ν)
dmax, (2.15)

for all k = 1, 2, · · · which completes the proof.
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2.5 Numerical and Experimental Results

This section aims to numerically and experimentally evaluate the effectiveness of the pro-
posed nonlinear control scheme. We consider a full-order dynamical model of the quadrupedal
robot A1 made by Unitree. The floating-based model of the mechanical system consists of
18 DOFs. Six DOFs are unactuated and describe the absolute position and orientation of
the robot. The remaining 12 DOFs are the actuated joints of the legs. More specifically,
each leg has a 2 DOF hip joint plus a 1 DOF knee joint. The robot weighs approximately
12.45 (kg) and stands up to 0.28 (m) off the ground. In this chapter, we consider a heuristic
and symmetric periodic orbit O for trotting at 0.1 (m/s). We remark that the orbit can
also be designed via trajectory optimization techniques. The orbit satisfies Assumptions
2.5 and 2.8. We then consider 12 virtual constraints to stabilize the orbit according to As-
sumption 2.3. The first three components are defined in the Cartesian space to track the
desired trajectories for the geometric center of the robot. The next three components are
defined to regulate the orientation of the torso. The remaining components are defined in
the Cartesian space to impose the swing leg ends to follow the desired trajectories starting
from the previous footholds and ending at the upcoming ones.

The proposed QP-based controller in (2.9) is solved using qpSWIFT [187] at 1kHz on an
external laptop with an Intel® Core™ i7-1185G7 running at 3.00 GHz and 16 GB of RAM.
Under nominal conditions, the computation time is 0.22 (ms) on average over the course of
one domain. The QP uses γn = {1, 0.1, 1e6, 1e8} for the weights and assumes a coefficient
of friction of µ = 0.7, which results in stable locomotion.

The proposed controller was first simulated in RaiSim [188], which assumes a rigid contact
model (i.e., utilizing (2.8)). Under nominal conditions, the controller results in stable trot-
ting. This is further examined by subjecting the robot to push and payload disturbances
that are unknown to the controller. Similarly, hardware experiments were performed under
several disturbance conditions. The phase plots in Fig. 2.1 display the simulated and exper-
imental results of a trot gait subject to a constant payload with a mass of 4.54 (kg), which
is 36% of the total body mass. The gap between simulated and experimental results can
be attributed to poorly modeled system dynamics, compliant feet, lack of rigorous contact
and state estimation, and differences in the position and mass of the payload. In light of
these potential shortcomings, the robot is able to remain stable without knowledge of the
payload. In addition to adequately handling this unmodeled payload, the robot was further
able to robustly resist push disturbances during experiments without becoming unstable.
Snapshots of the experiment involving both a payload and push disturbances can be found
in Fig. 2.2 and the corresponding CLF may be found in Fig. 2.3. Even under these distur-
bances, the theoretical derivative of the CLF remains negative for nearly the entire trial and
becomes positive for only brief moments (e.g., δ remains small). It should be noted that the
derivative provided depends on the solution to the QP. Therefore, the plot demonstrates the
theoretical value of the derivative at each time step subject to the optimal value of v from
(2.9). It can be observed that the CLF spikes during the pushes and slowly decreases as the
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Figure 2.3: CLF corresponding to the experiment in Fig. 2.2. The highlighted portions
indicate the pushes and corresponding recovery of the robot. The top plot corresponds to the
actual Lyapunov function calculated using the current state. The bottom plot provides the
theoretical derivative calculated from the current state and the optimal solution determined
by the QP. In particular, the derivative depends on the decision variable v from (2.9).

robot continues to step forward. Due to the hybrid nature of locomotion, convergence back
to the orbit is subject to constantly changing contact domains, leading to slow recovery. In
addition, in this work, we aim to track a heuristic trajectory and command a constant lateral
position for the robot. This can also lead to oscillatory motions. In particular, if the robot is
perturbed significantly from the desired position, it will aggressively attempt to move back
to the desired position, often resulting in overshoot and a longer settling time, as is evident
from the experimental results. This can be alleviated by providing an optimal trajectory
that is determined in an online manner. This topic will be explored more thoroughly in the
following chapters. videos of the experiments are available online [9].
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2.6 Summary

This chapter presented a nonlinear control scheme, based on virtual constraints, CLFs, and
QPs, to robustly stabilize periodic orbits for hybrid dynamical models of quadrupedal loco-
motion. The first theoretical contribution of this chapter established sufficient conditions
such that this QP-based controller is continuously differentiable on an open neighborhood
of the orbit. We subsequently showed the invariance of the orbit and its robust stability via
the Poincaré sections analysis and ISS. The effectiveness of the proposed controller was ver-
ified both numerically and experimentally on the A1 quadrupedal robot. The full-order and
nonlinear controller was implemented on the robot as a model-based CLF-QP in real-time.
The robust stability of trotting gaits against external disturbances and uncertainties arising
from unknown payloads was demonstrated in practice. Future research will investigate the
robustness of the gaits on rough terrains. We will also explore the integration of this control
scheme with higher-level and MPC-based planning algorithms.
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Chapter 3

Data-Driven Reduced-Order Models
for Single Agent Locomotion

3.1 Introduction and Motivation

As has been discussed throughout this work, many current state-of-the-art approaches for
planning or controlling legged robots rely on a reduced-order (i.e., template) model of the
robot [95]. This is done to gain real-time computational tractability while retaining the dom-
inant traits of the nonlinear dynamics by providing a low-dimensional approximation of the
full-order dynamics. However, choosing a reduced-order model that properly encapsulates
the dominant dynamics can be a difficult task. This work aims to construct a template model
based on data obtained during locomotion to provide a mapping from some desired inputs to
some desired outputs. This is intended to allow one to construct a reduced-order model with-
out explicitly having access to model parameters while also potentially encapsulating some
of the rich nonlinear dynamics. This additionally removes a layer of abstraction introduced
by linearizing a physics-based template model. Although the original theory considered in
this work does not directly apply to complex hybrid nonlinear systems, recent works have
provided theoretical extensions to certain classes of nonlinear systems [178], implementations
for stochastic and nonlinear systems [172, 173, 174], and linear parameter varying systems
[179]. However, to the best of the authors’ knowledge, there has not been an implementation
for unstable hybrid dynamical models of legged robots with underactuation and unilateral
constraints, which is the focus of this work. While rigorous theory has yet to be developed
extending to hybrid nonlinear systems, we have observed good performance nonetheless.

The overarching goal of this chapter is to develop a layered control approach based on data-
driven template models for real-time planning and control of dynamic quadrupedal robots.
More specifically, this chapter’s objectives and key contributions are as follows. 1) At the
higher level of the control approach, we provide a reduced-order model based on data by
leveraging information about state-of-the-art template models, specifically the SRB model,
which also potentially encapsulates important nonlinear information while forgoing the need
for successive linearization (see Fig. 3.1). 2) A computationally tractable predictive con-
troller is presented, based on a data-driven template model, for the real-time trajectory
planning of high degree of freedom quadrupeds. 3) The optimal trajectories are then passed
to a low-level nonlinear controller based on virtual constraints for whole-body motion control

32
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Figure 3.1: Overview of the proposed hierarchical control algorithm. At the high level, the
data-driven predictive control generates optimal trajectories for trajectory planning of the
quadrupedal robot. The optimal trajectories are then passed to a low-level and QP-based
nonlinear controller for the whole-body motion control. The data-driven transition matrix
is computed based on a set of offline experiments.

(see e.g., Chapter 2). 4) Experimental validation of the proposed layered control approach is
provided on the 18-DOF quadrupedal robot A1 for a walk and trot gait. We further provide
experiments that consider a variety of different gait parameters for trotting to explore the
robustness of the model to different parameters without collecting new data. The experi-
mental results also show robust locomotion of the A1 robot on unknown terrains and in the
presence of disturbances. The majority of the contents of this chapter are taken from our
previous work [177] with some extensions.

3.2 Preliminaries

This section provides an overview of some of the pertinent components of behavioral systems
theory. Behavioral systems theory provides a formal manner in which an unknown LTI
system can be parameterized purely by measured trajectories of the system.

Consider the model of an LTI system with the state vector xk ∈ Rn, the input vector
uk ∈ Rm, and the output vector yk ∈ Rp for k ∈ Z≥0 := {0, 1, · · · }. The standard discrete-
time state-space representation is described by

xk+1 = Axk +B uk

yk = C xk +Duk, (3.1)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, and D ∈ Rp×m are the state space matrices which
are unknown. Here we denote n, m, and p as the number of states, inputs, and outputs,
respectively. Consider some L, T ∈ N := {1, 2, · · · }, where T is the total length of the data
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collected and T ≥ L, along with some input trajectory ud ∈ RmT composed of a sequence of
collected data ud

k, i.e., ud := col(ud
0, . . . , u

d
T−1). In our notation, “col” represents the column

operator. As will be discussed shortly, L represents the sum of the prediction and estimation
horizons and is used primarily for notational compactness. Using this trajectory, one can
construct the corresponding Hankel matrix [172] as follows:

HL(u
d) :=


ud
0 ud

1 · · · ud
T−L

ud
1 ud

2 · · · ud
T−L+1... ... . . . ...

ud
L−1 ud

L · · · ud
T−1

 ∈ RmL×(T−L+1). (3.2)

Definition 3.1 ([171]). The signal ud is said to be persistently exciting of order L if HL(u
d)

is full row rank, ensuring the signal contains sufficiently rich information.

Definition 3.2 ([171]). The sequence {(ud
k, y

d
k)}T−1

k=0 is said to be a trajectory of the LTI
system (3.1) if there exists an initial condition x0 and a state sequence {xk}Tk=0 that meets
the state and output equations in (3.1).

Using Definitions 3.1 and 3.2, we are now in a position to present a foundational theorem
that is used to define an LTI system in terms of its trajectories.

Theorem 3.3. [168, Theorem 1] Let a trajectory of an LTI system, referred to as data, be
denoted by {(ud

k, y
d
k)}T−1

k=0 . If ud is persistently exciting of order L + n, then {(ūk, ȳk)}L−1
k=0 is

a trajectory of the system if and only if there exists g ∈ RT−L+1 such that[
HL(u

d)
HL(y

d)

]
g =

[
ū
ȳ

]
. (3.3)

Theorem 3.3 presents a data-driven approach for characterizing trajectories of an unknown
LTI system without requiring explicit system identification. This theorem will be used to
synthesize a data-driven predictive control approach for real-time motion planning of legged
robots in Section 3.3.

In order to formulate the trajectory planning problem as a closed-loop data-driven predictive
control approach, we will consider two different horizons as the estimation horizon Tini and
the prediction (i.e., control) horizon N . In particular, we assume that L = Tini +N . Here,
the estimation horizon Tini can be viewed as the number of input-output (I-O) pairs used to
uniquely determine the initial condition from the given sequence {(ūk, ȳk)}L−1

k=0 in (3.3). In
addition, N can be viewed as the prediction horizon in traditional MPC. Using collected I-O
data, denoted by (ud, yd), we can decompose the Hankel matrices of (3.3) as follows:

HL(u
d) =

[
Up

Uf

]
, HL(y

d) =

[
Yp
Yf

]
, (3.4)
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where Up ∈ RmTini×(T−L+1) and Yp ∈ RpTini×(T−L+1) are the portions of the Hankel ma-
trices used for estimating the initial condition (i.e., past), and Uf ∈ RmN×(T−L+1) and
Yf ∈ RpN×(T−L+1) are the portions used for prediction (i.e., future). A necessary condi-
tion for ensuring the information in the Hankel matrices is sufficiently rich is that T much
be chosen such that T ≥ (m+ 1)(Tini +N + n)− 1.

3.3 Data-Driven Motion Planner

This section provides a brief overview of data-driven predictive control and outlines the
application to trajectory planning for a quadruped. We further discuss similarities between
the SRB template model and the data-driven model.

3.3.1 Data-Driven Predictive Control

This section outlines an approach to address predictive control without a physics-based
model. In particular, we consider the regularized DeePC methodology provided in [172, 173]
as follows:

min
(g,u,y,σ)

N−1∑
k=0

(
∥yk − ydes

k ∥2Q + ∥uk∥2R
)
+ λg∥g∥2 + λσ∥σ∥2

s.t.


Up

Yp
Uf

Yf

 g +

0
σ
0
0

 =


uini
yini
u
y


uk ∈ U , yk ∈ Y , k = 0, . . . , N − 1 (3.5)

where Q ∈ Rp×p and R ∈ Rm×m are positive definite weighting matrices, ∥y∥2Q := y⊤Qy,
{ydes

k }N−1
k=0 represents a desired trajectory, and U and Y are feasible sets. In addition, λg and

λσ are positive weighting factors meant to regularize g and penalize the defect variable σ,
respectively. Here, the defect variable σ allows (3.5) to remain feasible in the wake of noisy
measurements. If no noise is present, then Theorem 3.3 applies directly. In our notation,
(uini, yini) denotes the past measured trajectory (i.e., feedback) over the estimation horizon
Tini to be used to indirectly estimate the initial condition in (3.5). From another perspective,
the estimation portion may be viewed as a manner in which we can ensure that the future
trajectories are dynamically consistent with the past trajectory. Put simply, we must ensure
that the previous and future trajectories align sufficiently well. In addition, (u, y) represents
the predicted trajectory over the control horizon N . We remark if the standard system
identification approach is applied to compute the minimum realization matrices in (3.1)
optimally, the state vector may not correspond to a physically measurable variable. Hence,
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one would need to integrate the MPC approach with observer techniques to asymptotically
estimate the states. However, the DeePC approach does not require any estimation beyond
what was required during data collection.

While effective, the size of the optimization problem (3.5) is prohibitive for real-time imple-
mentation on a quadruped. Lengthening the prediction horizon by one results in an increase
of 2(m+ p) decision variables and adds corresponding constraints. Furthermore, the major-
ity of results in behavioral systems theory are applicable only to LTI systems. Extending
these methods to nonlinear and underactuated dynamical models of legged robots requires
larger sets of data (i.e., larger T ). This introduces considerably more decision variables since
the size of g is directly proportional to the size of T . For this reason, we consider a least-
squares approximation of (3.5), which reduces the problem by (p Tini + T − L + 1) decision
variables. In particular, a least-squares approximation is used to find g such that it can
be removed from the problem, resulting in a constant linear mapping between the inputs u
and the outputs y based solely on experimental data. We remark that using this approach
with sufficiently large amounts of data precludes the need for σ in (3.5). Analogous to [173],
finding an approximation of g reduces to the following offline optimization problem

min
g

∥g∥2

s.t.

Up

Yp
Uf

 g =
uini
yini
u

 . (3.6)

The closed-form expression of (3.6) can be described by

g =

Up

Yp
Uf

† uini
yini
u

 , (3.7)

where (·)† represents the pseudo inverse. Using the fact that y = Yf g from (3.5), we have

y = G

uini
yini
u

 , G : = Yf

Up

Yp
Uf

†

, (3.8)

where G denotes the data-driven state transition matrix over N-steps. Using (3.8), we
are now in position to present the general form of a computationally tractable predictive
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controller based on data for trajectory planning

min
(u,y)

N−1∑
k=0

(
∥yk − ydes

k ∥2Q + ∥uk∥2R
)

s.t. y = G

uini
yini
u


uk ∈ U , yk ∈ Y , k = 0, . . . , N − 1. (3.9)

Remark 3.4. In this formulation, there is no longer a defect variable to mitigate the influ-
ence noise has on the prediction. Practically speaking, using large amounts of data consider-
ably reduces the impact of noise to the point where the defect variable is no longer necessary.
However, in the event that there are still issues with noise, one additional possibility would
be to consider using a Page matrix as opposed to a Hankel matrix, which has superior noise
properties but requires larger amounts of data [174].

Remark 3.5. Careful consideration is required when performing this approximation. In
particular, we remark that g in (3.5) seeks to find a linear combination of the previous I-O
pairs that can uniquely predict the future I-O pairs. The variables u and y are, in turn,
directly determined by the choice of g and the data in the Hankel matrices. From Theorem
3.3, if properly constructed, all possible trajectories of (3.1) are in the range space of the
Hankel matrices. However, this places no restriction on the norm of g. Suppose that we are
interested in maintaining a constant non-zero velocity of a rigid body. In this case, position
changes monotonically and ∥g∥2 → ∞ as t→ ∞. Therefore, this restricts us to outputs that
will remain in a neighborhood of zero.

3.3.2 Trajectory Planning for Quadrupedal Robots

In this section, we discuss the application of the data-driven predictive control of (3.9) to the
real-time planning of quadrupeds and draw relations to the common SRB template model.
The nonlinear SRB model is described by [4, 89, 90]

d
dt


pc
ṗc
R
ω

 =


ṗc

1
mnetf

net − g0 ez
R ω̂

I−1
r (R⊤τnet − ω̂ Ir ω)

 , (3.10)

where mnet is the total mass, g0 is the gravitational constant, ez := col(0, 0, 1) is the unit
vector along the z-axis, Ir is the body inertia, pc ∈ R3 is the position of the COM of the
robot in an inertial world frame, ω ∈ R3 is the angular velocity in the body frame, R ∈ SO(3)
is the rotation matrix with respect to the inertial world frame, fnet is the net force acting
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on the COM, and τnet is the net torque induced by the forces at the leg ends acting about
the COM. Furthermore, we denote the skew symmetric operator by (̂·) : R3 → so(3). The
net forces and torques in (3.10) can be described by[

fnet

τnet

]
=
∑
ℓ∈C

[
I3×3

d̂ℓ

]
fℓ, (3.11)

where ℓ ∈ C represents the index of the contacting leg with the ground, C is the set of
contacting points, fℓ ∈ R3 is the GRF at leg ℓ, and dℓ is the vector from the COM to leg
ℓ. The equations are nonlinear and typically linearized before being used with traditional
MPC approaches. Due to the accuracy degradation over long prediction horizons induced by
linearization and computational issues, the prediction horizon in these approaches is usually
small. Since the horizon is small, many implementations for nominal gaits such as trotting
assume the number of contact points with the environment remains constant for the duration
of the MPC. However, multiple domains have also been considered for more dynamic gaits
[87]. It should be noted that, even when using longer horizons, it is still possible to only
consider the current domain when the MPC is updated at a relatively high frequency, i.e.,
100+ (Hz).

In the data-driven approach, we aim to draw on knowledge of the well-studied SRB model
to pick suitable inputs and outputs while considering some of the potential pitfalls listed. In
particular, the inputs and outputs used to construct the Hankel matrices are chosen to be
u := f ∈ R12 (i.e., GRFs) and y := col(z, ẋ, ẏ, ż, α, ω) ∈ R10, where α ∈ R3 denotes the Euler
angles of the trunk. In other words, the inputs and outputs for the data-driven model are
identical to those used in the SRB model (3.10), with the exception of the position in the
transverse plane, i.e., the x and y position of the COM. These states are removed in light of
Remark 3.5.

Remark 3.6. Contrary to the SRB model, the data-driven model does not directly consider
the mapping between the forces and the torques acting about the COM as in (3.11). It is
assumed that the data-driven model encapsulates this mapping. While one could consider
the relative foot positions directly in the model, the increase in the size makes this prohibitive
for real-time computation, and this does not seem to pose an issue at this time. We further
remark that, although we have chosen to mimic the SRB model in this work, one could
similarly consider using the states and constraints found in other template models, such as
the LIP model, for use in this data-driven scheme.
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Figure 3.2: Overview of the process used to construct the data-driven template mode. The
data is collected by directly using the QP-based low-level controller (3.18), and that data
is then used to construct a template model on which a predictive trajectory planner can be
based.

The data-driven trajectory planner is then defined by

min
(u,y)

N−1∑
k=0

(
∥yk − ydes

k ∥2Q + ∥uk − udes
k ∥2R

)

s.t. y = G

uini
yini
u


uk ∈ FC, yk ∈ Y , k ∈ 0, . . . , N − 1, (3.12)

where udes
k represents the desired force at time k ∈ Z≥0 and FC := {col(fx, fy, fz)|fz >

0, ±fx ≤ µ√
2
fz, ±fy ≤ µ√

2
fz} denotes the linearized friction cone with µ being the friction

coefficient. In order to address the fact that we are predicting over a larger horizon compared
to many traditional SRB-based MPC approaches due to the lack of terminal cost, the desired
force and the constraints on the forces should be considered carefully. In particular, the
prediction horizon considered in this work is 1.25 times longer than the nominal stance time
of 200 (ms), which guarantees the prediction will span multiple continuous-time domains
(i.e., different stance leg configurations). Therefore, the desired force trajectory changes in
a step-like manner at anticipated domain changes. The desired forces in the x, y, and z
direction for leg ℓ are defined by

udes
k,ℓ :=

col
(
0, 0,

mnetg0
Nc,k

)
, ℓ ∈ Ck

col(0, 0, 0), Otherwise.
(3.13)

In this notation, Ck is the anticipated set of contacting legs with the ground at time k, and
Nc,k represents the number of contacting legs at time k. The force constraints also change in
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Figure 3.3: Snapshots from experiments with the proposed hierarchical control algorithm:
(a) external push disturbances, (b) external tethered pull disturbances, (c) unknown rough
terrain covered with wooden blocks, and (d) unstructured and unknown outdoor environ-
ment. Videos of these experiments can be found online [10].

a similar manner such that the forces on anticipated swing legs are restricted to zero, while
the anticipated stance leg forces must abide by the linearized friction cone FC. By altering
the desired contact sequence, one could parameterize different gaits, such as walking and
trotting. Although mnetg0 may not be strictly known, one could use the average net force
obtained during the data collection procedure or simply weigh the robot.

This data-driven predictive controller embodies many of the same principles as the SRB-
based MPC. However, in the data-driven approach, we explicitly consider domain changes in
the prediction and do not consider the x and y position of the COM. In addition, no assump-
tions are made about the dynamics of the legs, enabling this approach to potentially capture
some of the rich nonlinear dynamics indirectly through the GRF. Finally, this approach uses
a constant mapping that does not require successive linearization as done in [4, 89, 90].

3.4 Nonlinear Low-Level Controller

This section aims to present a brief overview of the low-level controller used to track the
trajectories produced by the trajectory planner.

3.4.1 Full-Order Nonlinear Dynamics

Here we provide an overview of the full-order model used for the synthesis of the low-level
controller. The model of the robot is constructed as a floating base, where q ∈ Q ⊂ Rnq

represents the generalized coordinates, Q is the configuration space, and nq denotes the
number of DOFs. We then define the state vector to be xf := col(q, q̇) ∈ X ⊂ R2nq with
X := Q×Rnq . The motor torques are then described by τ ∈ T ⊂ Rmτ where T is the set of
admissible torques and mτ is the number of inputs. The equations of motions are described
by

D(q) q̈ +H(q, q̇) = Υ τ + J⊤(q) f, (3.14)
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Figure 3.4: Phase portraits of the robot’s body orientation (i.e., roll and pitch) during
different experiments. The quadruped is able to robustly trot over flat ground (nominal),
unknown rough terrain covered with wooden blocks, and subject to external disturbances
(pulls). For each experiment, the robot is commanded to walk forward at 0.5 (m/s). The
reason for the slight pitch offset is unknown, but is attributed to tracking error at the low-
level.

where D(q) ∈ Rnq×nq represents the mass-inertia matrix, H(q, q̇) ∈ Rnq denotes the Coriolis,
centrifugal, and gravitational terms, Υ ∈ Rnq×mτ represents the input matrix, J(q) denotes
the contact Jacobian matrix, and f := col{fℓ| ℓ ∈ C} represents the vector GRFs of the
contacting leg ends. We further impose the holonomic constraint r̈ = 0 on (3.14), where
r := col{pℓ| ℓ ∈ C} represents the position of the contacting leg ends with the environment.
This constraint implies rigid contact with the ground and is valid if fℓ ∈ FC, ∀ℓ ∈ C.

3.4.2 Virtual Constraints Controller

This section provides the formulation of a QP-based virtual constraints controller used for
tracking both the forces and COM trajectory provided by the trajectory planner. We consider
a set of holonomic virtual constraints [40] as

h(xf , t) := h0(q)− hdes(t), (3.15)
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where h(xf , t) ∈ Rnvc , with nvc representing the number of virtual constraints, and is imposed
by I-O linearization [48]. The term h0(q) denotes the variables that we are interested in
controlling, and hdes(t) describes the desired evolution of h0(q). In this work, h0(q) consists
of the position and orientation of the COM and the Cartesian position of the swing feet.
In particular, a Bézier polynomial is constructed to move the foot from its initial position
to the target position, wherein the target position is determined using the Raibert heuristic
[189, Eq. (4), pp. 46]. Differentiating h(xf , t) twice along the dynamics (3.14), we have

ḧ = Θ1(xf ) τ +Θ2(xf ) f + θ(xf ) = −KP h−KD ḣ+ δ, (3.16)

where Θ1, Θ2, and θ are of proper dimension and obtained using a standard I-O linearization
procedure. We refer the reader to [103, Appendix A] for more details on the derivation of
these terms. In addition, KP and KD are positive definite gain matrices, and δ ∈ Rnvc

is a defect variable used in the formulation of the QP. In a similar manner, we define the
holonomic constraint placed on the stance legs to enforce rigid contact by differentiating the
Cartesian coordinates at the stance leg ends twice and setting them to zero as follows:

r̈ = Φ1(xf ) τ + Φ2(xf ) f + ϕ(xf ) = 0, (3.17)

for some proper Φ1, Φ2, and ϕ. We are now in a position to present the QP-based nonlinear
controller. The goal is to solve for the minimum 2-norm torques while imposing the virtual
constraints and tracking the desired forces, as well as abiding by the feasible torques and
friction cone. To this end, the following strictly convex QP is employed [43]

min
(τ,f,δ)

γ1
2
∥τ∥2 + γ2

2
∥f − fdes∥2 + γ3

2
∥δ∥2

s.t. Θ1(xf ) τ +Θ2(xf ) f + θ(xf ) = −KP h−KD ḣ+ δ

Φ1(xf ) τ + Φ2(xf ) f + ϕ(xf ) = 0

τ ∈ T , fℓ ∈ FC, ∀ℓ ∈ C, (3.18)

where γ1, γ2, and γ3 are positive weighting factors. In addition, the desired force profile
fdes(t) represents the optimal GRFs (i.e., inputs u) prescribed by the high-level data-driven
planner in (3.12). The defect variable δ is included such that the QP remains feasible if the
I-O linearization cannot be met exactly. The weighting factor on δ is chosen to be much
larger than the other weights to make the defect variable as small as possible. The low-level
controller can be used without a planner if the virtual constraints are chosen heuristically,
i.e., hdes(t) can be hand-tuned to produce stable locomotion as was the case in Chapter
2. However, we aim to provide an optimal trajectory produced by a trajectory planner to
reduce the required expertise necessary to enable stable locomotion and to provide additional
robustness when compared to a heuristic trajectory.
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3.5 Experimental Results

This section seeks to demonstrate the efficacy of the proposed approach for quadrupedal lo-
comotion through a variety of hardware experiments. We consider the quadrupedal platform
A1 made by Unitree. This robot consists of nq = 18 DOFs. We consider a floating-base
model of the robot, wherein the absolute position and orientation of the floating base com-
prise the first 6 DOFs, which are unactuated. The remaining DOFs are composed of the
actuated leg joints. Each leg has a 2-DOF hip joint followed by a 1-DOF knee joint (i.e.,
mτ = 12). The robot weighs approximately 12.45 (kg) and stands roughly 28 (cm) off the
ground.

3.5.1 Data Collection and Trajectory Planner

This section describes the procedure and parameters used for constructing the data-driven
model. An overview of this procedure can be found in Fig. 3.2. The data for the Hankel ma-
trices were collected at 100 (Hz) by moving the robot around a lab environment using a trot
gait, commanded via a joystick, utilizing only the low-level controller presented in Section
3.4.2. From the low-level QP (3.18), we obtain estimates of the GRFs and these estimates
are then utilized during the construction of the data-driven model as inputs ud. Although we
consider the use of the controller presented in Section 3.4.2, a different low-level controller
can be used as long as the outputs can be properly estimated, either directly through the
controller, using an estimator, or measuring the real forces through additional sensors. As
mentioned in Section 3.3.2, the proposed outputs are taken as yd = col(z, ẋ, ẏ, ż, α, ω) ∈ R10.
We opt to use a joystick as opposed to a random input trajectory which may require more
data due to the requirement of persistency of excitation but does not pose an issue in the
current formulation due to the removal of g from the predictive controller. Namely, the size
of the high-level QP remains constant, regardless of the amount of data used. The param-
eters used are Tini = 10 for the estimation horizon, N = 25 for the prediction horizon, and
T = 4284 collected I-O data points, which is much greater than the minimum number of data
points required by the general theory. The use of a large amount of data is highly beneficial
here because the system is complex and nonlinear. By using more data, the model better
encapsulates information from various configurations and is less sensitive to noise from the
collected data, providing a better overall approximation. This is in line with the promising
results of [172, 173] for the control of nonlinear systems. Namely, [172] considers drone
dynamics that are similar to the SRB model, and [173] attempts to dampen oscillations in
power systems.

Although the size of the problem is reduced considerably by using (3.9) as opposed to (3.5),
it is still large with 550 decision variables and 800 constraints. The size of the problem is
particularly exacerbated by the fact that the final model G is dense, which significantly slows
down the solvers. This issue will be discussed further in Chapter 5. The planner is solved
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using OSQP [190] and takes upwards of approximately 25 (ms) to solve on an external laptop
with an Intel® Core™ i7-1185G7 running at 3.00 GHz and 16 GB of RAM. Therefore, we run
the planner every 30 (ms) and use the first three steps of the optimal predicted COM trajec-
tory and GRFs as inputs passed to the low-level controller. Finally, the parameters in the
predictive controller are taken to be Q = diag(8e6, 5e5, 5e5, 5e3, 8e6, 8e5, 8e5, 5e3, 5e3, 5e5)
and R = 0.5I, where I is the identity of appropriate size.

Remark 3.7. If good force estimates are not available, the chosen I-O pair seems restrictive.
To alleviate this, one could also consider using u := col(zdes, ẋdes, ẏdes, żdes, αdes, ωdes), y :=
col(z, ẋ, ẏ, ż, α, ω) as the I-O pair for (3.12), which is less restrictive in terms of readily
available measurements.

3.5.2 Data-Driven Experimental Results

The purpose of this section is to provide the parameters for the QP-based low-level controller
(3.18) used in tandem with the trajectory planner and further provide experimental results
of the proposed hierarchical control scheme. In order to track the provided trajectory, the
weights in the low-level QP are chosen to be γ1 = 102, γ2 = 103, and γ3 = 106. The low-
level controller is solved at 1kHz using qpSWIFT [187] and takes approximately 0.22 (ms)
using the same external laptop as the planner. Snapshots of various experiments using the
trajectory planner in tandem with the low-level controller can be found in Fig. 3.3. In
these experiments, the robot is commanded to blindly walk forward at 0.5 (m/s) and was
subject to pushes (Fig. 3.3(a)), pulls (Fig. 3.3(b)), unknown rough terrain (Fig. 3.3(c)),
and unstructured outdoor environments (Fig. 3.3(d)). In all scenarios, the quadruped was
able to robustly maneuver. Videos of the experiments can be found online at [10]. Phase
portraits for these stable gaits can be found in Fig. 3.4. The phase portraits remain small
and bounded, which demonstrates the overall stability of the system. Using the data from
the same experiments found in Fig. 3.4, Fig. 3.5 displays the time response of the trajectories
resulting from the planner. While the disturbances are unknown, the planner remains stable,
showing the robustness of the planner against unknown external influences.

Extension to Other Gaits: The controller was additionally evaluated in terms of its ability
to track a time-varying reference and to consider an additional gait without collecting new
data. In order to test this, the robot was maneuvered across flat ground using a joystick
to provide velocity commands. The comparison between the output of the planner and the
commanded velocities for a trot gait can be found in Fig. 3.6(a), and for a walk gait in
Fig. 3.6(b). Additional experiments also evaluated the efficacy of the planner when using
a stance time that is 25% shorter (150 (ms)) and longer (250 (ms)) than that which was
used during the initial data collection. The videos of these experiments can be found online
at [10]. Our results suggest that the same data can be used even in situations that were
not exactly represented during the data collection procedure. This includes being robust to
external disturbances and handling gaits with different footfall patterns and step frequencies
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Figure 3.5: The prescribed trajectory from the planner while trotting subject to (a) rough
terrain consisting of unstructured wooden blocks and (b) tethered pulls. The robot is com-
manded to walk forward at 0.5 (m/s), the height command is 0.28 (m), and all other states
are commanded to be zero. Pulls occur for the first 4 seconds.

than that which was used during collection. However, dynamic gaits like bounding are likely
to require additional data collection.

3.5.3 Comparison to Physics-Based Reduced-Order Model

This section aims to briefly provide insight into how the proposed data-driven methodology
compares to linearized SRB. A comparison of the trajectories of the proposed approach ver-
sus the linearized SRB can be found in Fig. 3.7. The proposed approach, using only data to
construct a model, performs comparably to a moderately tuned linearized SRB-based MPC.
More specifically, the SRB-based MPC is linearized successively using the variational-based
approach found in [90]. The slightly attenuated noise profile in the proposed approach is
likely due to the estimation that is inherently contained within the model through (uini, yini).
This could also be due to the longer time horizon of the proposed approach and the fact
that the horizon spans multiple domains. However, we remark that the GRF profile for the
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Figure 3.6: The figure shows the stable output tracking of the planner compared to the
time-varying reference provided by a user through a joystick and the robot’s actual states
while using (a) a trot gait and (b) a walk gait. Each domain lasts 200 (ms).

data-driven approach tends to be more noisy and oscillatory when compared to the physics-
based approach. Although the two methods perform very similarly, the primary advantage
of the proposed approach is that no knowledge of the system dynamics is required to create
a reduced-order model while also foregoing the need for explicit system identification. Im-
provements could potentially be obtained by considering a Page matrix representation [174]
or singular value truncation [191], but we leave this to future investigation. Videos of the
comparison can be found in [10].

3.5.4 Unknown Low-Level Controller

In this section, the same planner is applied to the unknown and stock (i.e., manufacturer’s)
controller of the A1 robot, with only very slight modifications for implementation. In par-
ticular, when using the A1 robot for only high-level control, we no longer have access to the
scheduled foot contacts nor the estimated forces, both of which were previously obtained
using the QP-based low-level controller in (3.18). However, we may still obtain contact
information from the sensors at the feet. In order to use (3.13), we make the assumption
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Figure 3.7: Hardware experiments showing the evolution of the trajectory produced by the
data-driven planner (a) and a MPC planner using a linearized SRB model (b). The robot
aims to follow a velocity profile that results in a circular path.

that the stock controller changes continuous-time domains at a fixed frequency, which is
approximated based on the contact data collected during trotting. Furthermore, when con-
sidering the QP-based low-level controller, uini in (3.12) could be determined from the actual
estimated forces used by the low-level controller. Without access to these estimates, uini is
packed with the previous reduced-order forces prescribed by the trajectory planner, resulting
in open-loop force planning. Even though the forces are open-loop when no force estimates
are available, the reduced-order forces are comparable to the closed-loop case, as shown in
Fig. 3.8. Based on Fig. 3.9, it can further be observed that the resulting trajectory remains
near the desired commands. The planner is stable when used in either open- or closed-loop;
this implies that the planner is agnostic to the low-level controller, assuming that the given
low-level controller can track the provided trajectory sufficiently well. However, as in most
scenarios, the closed-loop system is preferred since closed-loop systems generally provide a
higher degree of robustness to disturbances. Furthermore, it is evident from Fig. 3.8 and
3.9 that the open-loop implementation is noisier and oscillates with a higher amplitude.
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Figure 3.8: The reduced-order GRFs produced by the path-planner for the front right leg.
The forces are tracked by the low-level controller in the case of the known controller (top),
and the forces are neglected when using the unknown controller. The desired forward velocity
is 0.5 (m/s).

3.6 Summary

This chapter presented a hierarchical control algorithm based on data-driven template mod-
els for real-time planning and control of dynamic quadrupedal robots. At the higher level,
we provide a reduced-order model, based purely on data, which is used in a computationally
tractable predictive control framework for real-time trajectory planning. The data-driven
model leverages the information about the SRB model while forgoing the need for succes-
sive linearization. The optimal trajectories are then passed to a QP-based and low-level
nonlinear controller for whole-body motion control. The efficacy of the proposed layered
control approach is validated via extensive experiments for robustly stable locomotion of the
A1 quadrupedal robot on different unknown terrains, in the presence of disturbances, and
considering different gaits and gait parameters without collecting additional data. Future
work should explore the use of data-driven template models with more complex systems such
as collaborative systems. In particular, the scalability to large-scale complex systems will
be a major challenge. Exploring how the data-driven approach compares analytically to the
linearized SRB model would also provide valuable insight into the dynamics captured by the
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Figure 3.9: The prescribed trajectory from the high-level planner during steady-state when
using a known low-level controller (top) and using an unknown low-level controller (bottom).
When using the unknown low-level controller, the MPC runs in open-loop. The desired
forward velocity is 0.5 (m/s), the desired height is 0.28 (m), and the desired value for all
other states is 0. The height is in meters, ẋ and ẏ are in (m/s), and roll, pitch, and yaw are
in radians. All states remain near their commanded values.
proposed method.



Chapter 4

Data-Driven Predictive Control for
Cooperative Locomotion

4.1 Introduction

This chapter investigates multi-agent systems that are composed of high-dimensional sub-
systems, namely quadrupedal robots. These multi-agent teams are rigidly holonomically
constrained to one another through the use of links connected via ball joints (see Fig. 4.1).
During nominal locomotion, wherein the robots are traversing flat ground, the interaction
forces remain relatively low. This is particularly the case in the event that the ground con-
tacts for each robot are in sync, which is often approximately the case when considering
time-based contact switching (i.e., switching at a common fixed frequency). However, when
operating over daunting terrain or when subject to unknown external disturbances, the team
of robots has the potential to exhibit high interaction wrenches that can lead to instability.

Current state-of-the-art approaches, even when considering only a single agent, generally
involve using a reduced-order model of some kind [95]. For a single agent, there have been
many template models that have worked effectively, as will be discussed shortly. However,
template models for multi-agent systems, particularly those with large interaction forces,
have not yet been fully explored. In particular, it is difficult to use traditional modeling
techniques to model an increasing number of agents due to increased dynamic complexity.
Even in the case that a large-scale dynamical system with strong interaction forces could be
modeled at the reduced-order level, it would likely be of such complexity that it would no
longer efficiently function as a reduced-order model for control or trajectory planning. The
goal of this chapter, therefore, is to address these issues. Namely, we aim to synthesize data-
driven template models for trajectory planning for large multi-agent systems such that the
resulting planner is computationally efficient for use in real time. In doing so, we also aim to
obtain a reduced-order model with sufficient information about the interconnected system
such that it can properly create trajectories for each agent. Furthermore, to the best of the
authors’ knowledge, there have not been implementations for multi-agent systems using the
data-driven methods presented here, namely, behavioral systems theory. This work is an
extension of [177] to distributed planning for constrained multi-agent teams of quadrupeds,
which introduces many difficulties, including high interaction forces, the hybrid nature of
legged locomotion, and unilateral constraints.

50
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Figure 4.1: Snapshot showing the locomotion of three holonomically constrained A1 robots
on wooden blocks.

The overarching goal of this chapter is to develop a computationally tractable real-time
Data-Driven Predictive Controller (DDPC) for collaborative legged locomotion using a be-
havioral approach. Namely, this chapter’s objectives and key contributions are enumerated
as follows: 1) A model is created using concepts from behavioral systems theory for systems
of quadrupeds that are holonomically constrained to one another. 2) The model is used in
the context of a distributed predictive control framework such that each agent can effectively
plan for its own motions while considering the motions of other agents (see Fig. 4.2). 3)
Simulation results for 5 constrained quadrupeds in the presence of ground height uncertainty
and wavering terrain are provided. 4) We present extensive experimental validation on a
team of 3 holonomically constrained quadrupeds. The experimental validation shows robust
locomotion of the A1 robot subject to various uncertainties, including rough terrain, push
disturbances, and outdoor environments. The majority of the contents of this chapter are
taken from our previous work [154].

4.2 Preliminaries

In this section, we recap some important concepts from behavioral systems theory that will
be used throughout this chapter. Behavioral systems theory provides a manner in which
data collected from a system can be leveraged to directly create a model. In particular,
consider an LTI model with the state vector xk ∈ Rn, the input vector uk ∈ Rm, and the
output vector yk ∈ Rp for k ∈ Z≥0 := {0, 1, · · · }. Such a model can be represented in discrete
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Figure 4.2: Overview of the proposed control algorithm with distributed DDPC algorithms at
the high level for trajectory optimization of cooperative locomotion and nonlinear controllers
at the low level for tracking and whole-body motion control.

time as follows:

xk+1 = Axk +B uk

yk = C xk +Duk, (4.1)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, and D ∈ Rp×m are the state-space matrices, which
are unknown. In this notation, n, m, and p represent the number of states, inputs, and
outputs, respectively. One difference between traditional system identification and behav-
ioral systems theory is that, traditionally, one would attempt to reconstruct the matrices of
(4.1) using data. In the behavioral context, we obtain an input-output (I-O) model without
reconstructing the state matrices.

To introduce the concepts, consider L, T ∈ Z≥0, where T ≥ L. In addition, define some
input trajectory ud ∈ RmT composed of a sequence of ud

k, i.e., ud := col(ud
0, . . . , u

d
T−1). In

this notation, “col” represents the column operator. Using this trajectory, one can construct
the following Hankel matrix

HL(u
d) :=


ud
0 ud

1 · · · ud
T−L

ud
1 ud

2 · · · ud
T−L+1... ... . . . ...

ud
L−1 ud

L · · · ud
T−1

 ∈ RmL×(T−L+1). (4.2)

Definition 4.1 ([171]). The signal ud is said to be persistently exciting of order L if HL(u
d)

is full row rank.

Definition 4.2 ([171]). The sequence {(uk, yk)}T−1
k=0 is said to be a trajectory of the LTI

system (4.1) if there exists an initial condition x0 and a state sequence {xk}Tk=0 that meets
the state and output equations in (4.1).
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Using Definitions 4.1 and 4.2, we can now present a foundational theorem in behavioral
systems theory, used to represent an LTI system based on observed trajectories.

Theorem 4.3. [168, Theorem 1] Let an observed trajectory of (4.1), referred to as data, be
denoted by {(ud

k, y
d
k)}T−1

k=0 . If ud is persistently exciting of order L + n, then {(ūk, ȳk)}L−1
k=0 is

a trajectory of the system if and only if there exists g ∈ RT−L+1 such that[
HL(u

d)
HL(y

d)

]
g =

[
ū
ȳ

]
. (4.3)

Theorem 4.3 provides a constructive manner in which an LTI system can be represented
through its trajectories without explicit system identification. This concept will be used
throughout this work as we aim to parameterize a complex system of robots by using only
their trajectories. To do so, we consider two different horizons denoted by Tini and N ,
which represent the estimation horizon and control horizon, respectively. The estimation
horizon encapsulates the input-output pairs that are required in order to determine the
initial conditions of a trajectory given a particular I-O sequence {(ūk, ȳk)}L−1

k=0 from (4.3).
In contrast, the prediction horizon represents how far into the future predictions of the
trajectories are made, similar to that of traditional MPC. Finally, we define L = Tini + N
for compact notation. We denote the collected I-O data by (ud, yd) and can decompose the
Hankel matrices of (4.3) into two parts as follows:

HL(u
d) =

[
Up

Uf

]
, HL(y

d) =

[
Yp
Yf

]
, (4.4)

where Up ∈ RmTini×(T−L+1) and Yp ∈ RpTini×(T−L+1) are the portions of the Hankel ma-
trices used for estimating the initial condition (i.e., past), and Uf ∈ RmN×(T−L+1) and
Yf ∈ RpN×(T−L+1) are the portions used for prediction (i.e., future). A necessary and suf-
ficient condition to establish that the Hankel matrix is sufficiently rich is to choose T such
that T ≥ (m + 1)(Tini + N + n) − 1, which is a well-known result in behavioral systems
theory.

4.3 Distributed DDPC for Trajectory Planning

In this section, we present the main contribution of this chapter—the development of a
DDPC for constrained multi-agent systems.
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4.3.1 Overview of DeePC

The aim of this section is to outline how the data-driven approach is used for predictive con-
trol, as well as highlight some difficulties. To begin, consider the real-time DeePC method-
ology provided in [172, 173] as follows:

min
(u,y,g,σ)

N−1∑
k=0

(
∥yk − ydes

k ∥2Q + ∥uk∥2R
)
+ λg∥g∥2 + λσ∥σ∥2

s.t.


Up

Yp
Uf

Yf

 g +

0
σ
0
0

 =


uini
yini
u
y


uk ∈ U , yk ∈ Y , k = 0, . . . , N − 1, (4.5)

where Q ∈ Rp×p and R ∈ Rm×m are positive definite weighting matrices, ∥y∥2Q := y⊤Qy,
{ydes

k }N−1
k=0 represents a desired trajectory, and U and Y are the feasible input and output

sets, respectively. In our notation, (uini, yini) denotes the past measured trajectory over the
estimation horizon Tini, which provides feedback directly into the model. In addition, (u, y)
represents the predicted I-O trajectory over the control horizon N . This method has proven
to be robust and has worked for several nonlinear systems [172, 173]. One of the primary
reasons for this is the addition of λg and λσ, which are positive weighting factors meant to
regularize the g vector from Theorem 4.3 and penalize the defect variable σ, respectively.
Note that σ is added to lessen the effect that noisy data has on the system. If the data
were to contain no noise, this variable could be removed, though it is generally required in
practice.

Although this methodology has the benefit of not requiring a direct model, it also comes
with considerable computational complexity as the system increases in size due primarily
to the vector g. Consequently, this method is intractable for real-time computation on
teams of quadrupedal robots. For a more in-depth discussion on the matter, we refer the
interested reader to [177]. To circumvent the problem, we adopt an offline approximation
for g, analogous the previous chapter, and to [173, 177] as follows:

g =

Up

Yp
Uf

† uini
yini
u

 , y = G

uini
yini
u

 , G : = Yf

Up

Yp
Uf

†

, (4.6)

where (·)† represents the pseudo inverse and G denotes the data-driven state transition matrix
over N-steps. Using this procedure, we can remove g from the optimization problem (4.5),
considerably reducing the number of decision variables.
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4.3.2 Distributed Multi-Agent Trajectory Planning

Here, we outline how the data-driven model (4.6) can be used to create a distributed planner
for groups of holonomically constrained legged robots. First, we present the control law in
a centralized manner, i.e., assuming that one planner is used to control the whole system.
This is later decomposed for distributed computation. In particular, consider the centralized
predictive control problem utilizing (4.6) as follows:

min
(u,y)

N−1∑
k=0

(
∥yk − ydes

k ∥2Q + ∥uk∥2R
)

s.t. y = G

uini
yini
u


uk ∈ U , yk ∈ Y , k = 0, . . . , N − 1. (4.7)

This method has been shown to be amenable to trajectory planning for single-agent legged
robots [177] but has not been used for multi-agent systems. In the multi-agent context, the
state transition matrix G is created using data from all of the agents. This effectively incorpo-
rates not only the dynamics reduced-order dynamics of individual agents but further includes
information about the interconnections. In particular, Theorem 4.3 considers the trajectory
(ud, yd) to define the Hankel matrix. To construct the Hankel matrix for multi-agent systems,
we can define ud := {col(ud,1

k , ud,2
k , · · · , ud,na

k )}T−1
k=0 and yd := {col(yd,1

k , yd,2
k , · · · , yd,na

k )}T−1
k=0 ,

where (·)d,i
k for all i ∈ I := {1, · · · , na} denotes the data contributed by agent i at the

sample time k, and na is the total number of agents. Using these combined I-O pairs, we
obtain a large Hankel matrix describing the entire complex system in a centralized repre-
sentation. Furthermore, this new Hankel matrix can be decomposed according to (4.4), and
the corresponding g vector can be approximated using (4.6).

In moving to multi-agent systems, however, it is desirable to share the computational load
between agents. In order to do so, we consider a decomposition of G into each agent’s
primary dynamics and the coupling dynamics between agents as follows:

G =


G1,1 G1,2 · · · G1,na

G2,1 G2,2 · · · G2,na

... ... . . . ...
Gna,1 Gna,2 · · · Gna,na

 , (4.8)

where Gi,j represents the effect of agent j on the predicted output of agent i (i.e., coupling)
and Gi,i represents the primary dynamics of agent i. In particular, the predicted output of
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agent i ∈ I can be expressed by

yi = Gi,i

uiini
yiini
ui

+
∑
j ̸=i

Gi,j

ujini
yjini
uj

 , (4.9)

where (·)i represents the variables related to the ith agent. In essence, (4.9) is structured
similarly to the control trajectory planner in the case of a single agent discussed in Chapter
3 but with the addition of a coupling term. However, (4.9) assumes knowledge of the current
solution for all other agents, which cannot feasibly be obtained since each agent is running
its own planner in a parallelized manner. In order to alleviate the coupling problem, we
adopt a one-step communication delay protocol. In particular, we assume that at every time
sample t, each local DDPC has access to the optimal predicted solutions of the other local
DDPCs and their past measurements at time t − 1. Using this assumption, the predicted
output of agent i can be approximated by

yi ≈ Gi,i

uiini
yiini
ui

+
∑
j ̸=i

Gi,j

u
j
ini|t−1

yjini|t−1

uj|t−1

 , (4.10)

where uj|t−1 denotes the optimal solution of the local DDPC for agent j at time t − 1
and the summation is constant until the next time the DDPC is updated. In addition,
(ujini|t−1, y

j
ini|t−1) represents the past measurements of agent j at time t − 1. This choice

allows each local planner to run independently and results in the following network of dis-
tributed DDPCs, cast into the form of local QPs to be solved at time t

min
(ui,yi)

N−1∑
k=0

(
∥yik − ydes,i

k ∥2Q + ∥uik − udes,i
k ∥2R

)

s.t. yi = Gi,i

uiini
yiini
ui

+
∑
j ̸=i

Gi,j

u
j
ini|t−1

yjini|t−1

uj|t−1


uik ∈ U , yik ∈ Y , k = 0, . . . , N − 1, (4.11)

where udes,i
k and ydes,i

k represent the desired inputs and outputs for agent i at the prediction
step k (see Fig. 4.2). The optimal input and output trajectories are then passed to the
low-level controller for tracking. In this work, we choose a subset of COM state variables for
the output y while taking the GRFs as the control inputs u. This will be clarified more in
Section 4.5.1. Consequently, the feasible set U is chosen as the linearized friction cone, i.e.,
U = FC := {col(fx, fy, fz)|fz > 0, |fx| ≤ µ√

2
fz, |fy| ≤ µ√

2
fz}, where µ denotes the friction

coefficient.
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Figure 4.3: (a) Simulation results of 5 agents over varying terrain with a payload of 10 (kg),
(b) rough terrain experiment with unstructured wooden blocks and a 4.5 (kg) payload, (c)
experiment with push disturbances, and (d) experiment maneuvering over gravel. Videos
are available online [11].

Remark 4.4. It is assumed The interaction wrenches between the agents are encapsulated
in the data-driven model of the distributed planner. To simplify the synthesis of the low-level
controllers, we do not consider the interaction wrenches between the agents when performing
whole-body control.

4.4 Nonlinear Low-Level Controller

The purpose of this section is to briefly provide the details of the low-level controller [43],
based on QP and virtual constraints [40], to be used in this work. In particular, we model
each robot using a floating base and represent the generalized coordinates of the system
by q ∈ Q ⊂ Rnq , where Q is the configuration space and nq represents the number of
DOFs of the system. We further denote the joint-level torques by τ ∈ T ⊂ Rmτ . In this
notation, T denotes the allowable torques and mτ denotes the number of actuators. It is
assumed that the interaction wrenches between agents are encapsulated by the data-driven
model. Therefore, we neglect these wrenches in the low-level controller. In particular, the
overarching equations of motion for the full-order system of each agent become

M(q) q̈ +H(q, q̇) = Υ τ + J⊤(q) f, (4.12)

where M(q) ∈ Rnq×nq is the mass-inertia matrix, H(q, q̇) ∈ Rnq denotes the Coriolis, cen-
trifugal, and gravitational terms, Υ ∈ Rnq×mτ represents the input matrix, J(q) denotes the
contact Jacobian matrix, and f represents the GRFs at the stance feet. We further suppose
that the positions of the stance leg ends, denoted by r, do not slip, i.e., r̈ = 0.

With the dynamics in hand, we can now present the virtual constraints controller. In partic-
ular, we aim to track both force and COM trajectories generated by the high-level distributed
planners. For this purpose, we consider virtual constraints as output functions to be reg-
ulated as h(q, t) := h0(q) − hdes(t). These virtual constraints are then imposed via partial
feedback linearization [48]. Here, h0(q) denotes the controlled variables consisting of the
COM position, orientation, and the Cartesian coordinates of the swing leg ends. Finally,
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hdes(t) represents the desired evolution of h0(q). In this work, the desired end position for
a swing leg is chosen using the Raibert heuristic [189, Eq. (4), pp. 46], and the trajectory
for the swing leg is defined using a Bézier polynomial. These virtual constraints, along with
the no slippage condition, are concatenated into a single strictly convex QP to be solved at
1kHz as follows [43]

min
(τ,f,δ)

γ1
2
∥τ∥2 + γ2

2
∥f − fdes∥2 + γ3

2
∥δ∥2

s.t. ḧ(τ, f) = −KP h−KD ḣ+ δ (Output Dynamics)
r̈(τ, f) = 0 (No slippage)
τ ∈ T , f ∈ FC (Feasibility), (4.13)

where γ1, γ2, and γ3 are positive weighting factors, and the desired force profile fdes(t)
(i.e., inputs u) is prescribed by the high-level DDPC in (4.11). The equality constraints are
expressed as 1) the output dynamics ḧ+KD ḣ+KP h = δ for positive definite gain matrices
KP andKD and δ being a defect variable to ensure feasibility, and 2) the no slippage condition
r̈ = 0. We remark that ḧ and r̈ are affine functions of (τ, f), hence, the problem is convex.
We direct the reader to [103, Appendix A] for more information regarding the derivation of
ḧ and r̈ according to Lie derivatives. The QP solves for the minimum-power torques τ while
tracking the prescribed forces and COM trajectory.

4.5 Experiments

In this section, we provide the procedure for collecting the data for the reduced-order model
and further provide the simulation and experimental results. Here we consider the 18-DOF
quadruped A1 made by Unitree. The robot is modeled using a floating base, with the
first 6 DOFs being composed of the unactuated position and orientation of the trunk. The
remaining DOFs are composed of the actuated hip roll, hip pitch, and knee pitch joints for
each leg. The robot weighs around 12.45 (kg) and the center of the trunk is 0.26 (m) above
the ground during locomotion. We are, however, interested in multi-agent systems. We
assume that each of the agents is holonomically constrained to other agents in a complete
graph, i.e., there is no relative translational motion between agents. In order to accomplish
this, we connect the robots together rigidly through a ball joint (see Fig. 4.3 and [127]). In
simulations, this is imposed via a distance constraint.

4.5.1 Data Collection

We begin by describing the I-O pairs considered in this work and the manner in which the
data was collected. The data that is to be used in the Hankel matrix is collected in simulation
at 100 (Hz) during nominal locomotion of a holonomically constrained team of robots. This
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is in contrast to [177], which used hardware data obtained by using a single agent. However,
one of the contributions of this work is to create a reduced-order model of highly complex
systems that interact with one another. From this standpoint, it makes sense to consider
simulation data since each individual agent can be modeled accurately, but the complexity of
collaborating agents is prohibitive in terms of defining a physics-based reduced-order model.
Furthermore, explicitly deriving the interaction forces between agents is not scalable as the
physics-based representation becomes increasingly nonlinear and complex as the cooperative
team grows in size. Finally, the use of simulation data also displays good sim-to-real transfer
for the learned model, as will be shown in what follows.

In order to perform the data collection in simulation, we first choose the inputs to be the
forces at the contacting leg ends, and we take the outputs as yd = col(z, ẋ, ẏ, roll, pitch, ωz),
where z is the standing height, ẋ and ẏ are the linear velocities of the COM in the transverse
plane, and ωz denotes the angular velocity about the vertical axis of the torso. These outputs
are chosen because they represent the variables of interest to an end-user when providing
joystick commands to a robot. It should be noted that other I-O realization could provide
fruitful results depending on the goal of the planner and the available measurements. During
the data collection procedure, the team of quadrupeds are commanded to walk around in
RaiSim [188] using just the low-level controller (4.13), while random noise is injected into
the desired forces, which helps ensure the persistence of excitation. In particular, we choose
the desired forces to be

udes
k,ℓ :=

col
(
0, 0,

mnetg0
Nc,k

)
, ℓ ∈ Ck

col(0, 0, 0), Otherwise,
(4.14)

for each contacting leg ℓ ∈ C i
k and zero otherwise, where mnet,i is the total mass of agent

i, g0 is the gravitational acceleration, N i
c,k is the anticipated number of contacting legs for

agent i at time k, and C i
k is the anticipated set of contacting legs for agent i at time k. That

is, when collecting data, we choose the desired force to be a random perturbation about the
nominal amount of force that is required to hold the quadruped in a static position based
on the number of anticipated contacts.

For this problem, we consider an estimation horizon of Tini = 10 and N = 25 for the pre-
diction horizon. We further ensure that T is chosen such that the amount of data collected
far exceeds that required by the general theory. This, in turn, assists in potentially captur-
ing more nonlinear information while also reducing the impact of noise. The collection of
additional data when utilizing the formulation (4.5) could pose an issue due to an increase
in decision variables. However, this is mitigated by utilizing the approximation (4.6). In
addition, for larger numbers of agents, it has also been observed that the model contains
over-fitting and benefits greatly from singular value truncation [191] such that the model
only encapsulates the dominant traits of the dynamics. For smaller numbers of agents, this
does not pose an issue, but for 4 or more agents, we obtain better results when truncating
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Figure 4.4: Example of the singular values of the Hankel matrix creates for a graph of 5
agents.

the resulting model using a Singular Value Decomposition (SVD) approach. The threshold
is chosen differently based on the number of agents and the data collected, but in all sce-
narios, the threshold is apparent when plotting the singular values on a logarithm scale. In
particular, the threshold is taken as the point at which the logarithm of the singular values
exhibits a dramatic drop-off (see e.g., Fig. 4.4). However, for a far more in-depth discussion
on choosing a cut-off such that the resulting system is a minimum realization, we refer the
reader to [192].

4.5.2 Simulations

The high-level planner contains 450 decision variables per agent. In the centralized case using
5 agents shown here, that amounts to 2250 decision variables, which further motivates the
necessity for a distributed approach. In addition, similar to the single agent case, the data-
driven model is also dense, which further slows the solver down. Utilizing the distributed
scheme, the predictive controller is updated every 40 (ms) (25 (Hz)), and the first 4 time
steps are implemented, i.e., the prediction occurs over a horizon of 250 (ms), and the first
40 (ms) of the prediction is implemented. The distributed high-level planner is solved using
OSQP [190] and takes approximately 15 (ms) on an external laptop with an Intel® Core™

i7-1185G7 running at 3.00 GHz and 16 GB of RAM. However, solve times of ∼ 30 (ms) have
been observed in some configurations, further motivating the decision to update the planner
at 40 (ms), which is conservative but still works well in practice. Conversely, the centralized
approach cannot feasibly be solved in real time. The predictive controller parameters are
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Figure 4.5: The trajectory from the planner (a) and the vertical GRF of the front right
leg from the planner (b) for agent 1. A forward speed of 0.5 (m/s) is commanded, and
the standing height is 0.26 (m). The multi-agent system is subject to uneven terrain and a
payload of 10 (kg), and can maneuver robustly. A snapshot of the simulation can be found
in Fig. 4.3 (a).

chosen as Q = diag(1e6, 1e5, 1e5, 2e5, 1e5, 1e4) and R = I ⊗ diag(0.05, 0.05, 0.5), where I is
an identity matrix of an appropriate size, and ⊗ represents the Kronecker product. Finally,
the parameters used by the low-level controller to track the trajectory and forces from the
planner are chosen to be γ1 = 102, γ2 = 103, and γ3 = 106, resulting in stable locomotion. All
of the gains used in the simulation for both the high- and low-level controllers are identical
to those used during the hardware experiments in the following section.

In order to show the efficacy of the proposed controller for 5 agents, we consider a compound
experiment in simulation such that the multi-agent system is subject to an unknown payload
of 10 (kg) and uneven terrain. A snapshot of the simulation can be found in Fig. 4.3 (a),
while the prescribed forces and trajectory for the first agent can be found in Fig. 4.5. From
these figures, it is evident that the planner produces forces that are feasible, while also
resulting in a viable COM trajectory for the low-level controller to track.



62 CHAPTER 4. DATA-DRIVEN PREDICTIVE CONTROL FOR COOPERATIVE LOCOMOTION

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-0.5

0

0.5 (a)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-0.2

0

0.2

0.4

(b)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

50

100

(c)

Figure 4.6: The trajectory from the planner of agent 1 while trotting at approximately 0.4
(m/s) subject to (a) rough terrain with unstructured wooden blocks and (b) loose gravel.
We further show the vertical GRF for the front right leg produced by the planner for rough
terrain in (c). The GRF during the gravel experiment is similar.

4.5.3 Hardware Experiments

Finally, we provide hardware experiments to show the effectiveness of the planner. In partic-
ular, for hardware experiments, we consider the use of 3 quadrupeds that are holonomically
constrained using a ball joint. Snapshots of several experiments can be found in Fig. 4.3
(b)-(d), which shows the multi-agent system subject to external disturbances and unknown
environments. In Fig. 4.6, we illustrate the behavior of the planner in terms of its prescribed
trajectory when walking over unstructured wooden blocks (Fig. 4.6 (a)) and navigating over
loose gravel (Fig. 4.6 (b)). The corresponding forces for the rough terrain experiment can be
found in Fig. 4.6 (c). Finally, we provide an additional experiment to show the ability of the
planner to track a time-varying trajectory subject to a 6.8 (kg) payload, where the trajectory
produced by the planner can be found in Fig. 4.7. It is evident that the planner provides a
robustly stable output even in the presence of significant uncertainty in terms of payloads
and various environmental factors. Videos of the simulation and hardware experiments can
be found in [11].
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Figure 4.7: The plot shows the tracking performance of the planner when using a time-
varying trajectory provided using a joystick. In this experiment, the quadrupeds navigate
flat ground subject to a 6.8 (kg) payload. The plot shows the trajectory of agent 1.

4.6 Summary

This chapter presented a data-driven planner for robust multi-agent quadrupedal locomo-
tion, wherein the robots were constrained to one another with a ball joint. We considered the
use of behavioral systems theory to model the complex system and further proposed a dis-
tributed scheme to spread the computational load. We provided extensive experiments both
in simulation and on hardware, which showed the robustness of this method to uncertainty
in terrain, payloads, and external disturbances. Future work will examine this methodology
when the robots do not form a complete graph, i.e., the agents are constrained but have
limited freedom to change formation. Additionally, we will explore how this method could
extend to an even greater number of agents.
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Chapter 5

Combining Models for Multi-Agent
Trajectory Planning

5.1 Introduction

The purpose of this chapter is to examine a different approach to utilizing behavioral sys-
tems theory for holonomically constrained multi-agent legged locomotion. In particular, it
has been discussed in previous chapters that a major pitfall to the behavioral approach is the
computational demand. This was, in part, remedied both through the use of a 2-norm ap-
proximation of the model as well as the use of a one-step communication delay to distribute
computation in the multi-agent context. However, the fact that the data-driven problem
formulation is dense still poses a considerable computational bottleneck. This is particularly
the case since modern QP solvers can leverage the sparsity of a problem leading to far su-
perior performance when compared to using a dense formulation. Therefore, the purpose of
this chapter is largely similar to Chapter 4—creating a tractable and effective reduced-order
model for holonomically constrained legged locomotion—with the additional goal of further
reducing the computational burden by increasing sparsity. This chapter further aims to cre-
ate a smoother gait and a better GRF profile compared to previous methods. In particular,
we consider combining physics-based methods with behavioral systems theory, which, to
the best of the authors’ knowledge, is the first time that this has been done. The goal of
Chapter 3 was to emulate the SRB model in hopes that a certain degree of the nonlinear
dynamics could be captured in a neighborhood of the data collected by using a data-driven
model. While this proved to be effective, the standard SRB model has consistently provided
good results in a variety of scenarios. Furthermore, the data-driven approach led to a dense
formulation that ran very slowly relative to a linearized SRB model. For these reasons, this
last chapter aims to pivot and include the SRB dynamics directly into the formulation.

Although the SRB model has abstraction by not considering the legs or time-varying inertia
and is successively linearized when used within a MPC framework, it is effective nonetheless.
Consequently, we adopt a similar concept as Chapter 4 and provide an additional extension.
Namely, when considering constrained multi-agent systems, we discussed that the nonlinear
dynamics of each agent could be obtained with a sufficient degree of accuracy. Conversely,
a reduced-order model that considers both the dynamics of individual agents and the inter-
actions between them could not be obtained to an adequate degree of accuracy while also

65
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Figure 5.1: Block diagram of the SRB model used in tandem with a data-driven model that
approximates the interaction forces between agents.

remaining feasible as a scalable reduced-order model. This is primarily due to the use of
physics-based techniques. However, the reduced-order dynamics of individual agents can be
represented very well through the SRB model. It then stands to reason that instead of pa-
rameterizing the entire reduced-order model through the use of a sizeable data-driven model
as was done in Chapter 4, we can instead consider an interconnected SRB model where only
the interaction wrench is defined using a data-driven model (see e.g., Fig. 5.1).

The proposed method is in contrast to previous work that aimed to parameterize the differ-
ence between reduced- and full-order models through the use of reinforcement learning [61].
This is further different from [103, 127] in that the interactions are modeled using data in
the work presented here. Furthermore, this work considers a different linearization technique
for the SRB model compared to both [127] and [61] that is simpler and leads to more robust
locomotion, although it cannot address acrobatic motions. Additionally, the formulation
provided in this chapter considers a very sparse linear predictive controller, leading to very
fast solve times, whereas other works such as [128] have considered NMPC approaches to
similar problems that are far less efficient in terms of computation time. Finally, [128] con-
siders an extremely simple model, namely the unicycle model, which reduces the complexity
of the system immensely and is not sufficiently accurate for robots such as quadrupeds.

5.2 Standard Single Rigid Body Model

This section provides an overview of the dynamics of the SRB model and the successive lin-
earization technique used in tandem with the MPC formulation. In particular, the nonlinear
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SRB dynamics in world coordinates for a single agent are defined by [87]

p̈com =
1

mtot

4∑
i=1

fi − ḡ

ω̇ = I−1

(
4∑

i=1

r̂ifi − ω̂Iω

)
Ṙ = ω̂R, (5.1)

where pcom ∈ R3 represents the position of the center of mass, fi ∈ R3 is the GRF of foot i,
ri ∈ R3 is the relative position of foot i with respect to the COM, R ∈ R3×3 is the rotation
matrix for the torso of the body, and ω ∈ R3 is the angular velocity. Furthermore, mtot, I ∈
R3×3, and ḡ ∈ R3 represent the total mass, the inertia, and the gravity vector, respectively.
Finally, in this notation, (̂·) ∈ R3×3 represents the skew-symmetric operator. These dynamics
are nonlinear and contain a rotation matrix as a state, making this formulation infeasible for
use with a QP solver. For this reason, we opt to consider a linearized model that uses Euler
angles. In particular, we adopt a yaw-pitch-roll convention for the Euler angles and consider
the small-angle approximation for both the pitch and roll states, and further assume that
the precession and nutation of the torso are negligible. These are reasonable assumptions for
nominal locomotion, i.e., for relatively small body angles and angular velocities. For more
information regarding these simplifications, we refer the interested reader to [87, 193]. With
this approximation, we can then use the rate of change of Euler angles defined byϕ̇θ̇

ψ̇

 =

 cos(ψ) sin(ψ) 0
− sin(ψ) cos(ψ) 0

0 0 1

ω, (5.2)

where ϕ, θ, and ψ represent the roll, pitch, and yaw angles, respectively, and we define
α = col(ϕ, θ, ψ) for future use. This expression then simplifies to α̇ = R⊤

z ω. Using this
approximation, the linearized model is then given by

xk+1 = Akxk +Bkuk + d (5.3)

where uk ∈ R12 is a stacked vector of the GRFs for all four legs. The state vector is taken
to be x = col(pcom, ṗcom, α, ω), resulting in the following state matrices [87]:

A =


03 I3 03 03

03 03 03 03

03 03 03 R⊤
z

03 03 03 03

 ∈ R12×12, B =


03 · · · 03
1

mtot
I3 · · · 1

mtot
I3

03 · · · 03

I−1r̂1 · · · I−1r̂4

 ∈ R12×12, d =


03
03
ḡ
03

 ∈ R12,

where I3 ∈ R3×3 is an identity matrix, 03 ∈ R3×3 is a matrix of zeros, and 03 ∈ R3 is a
vector of zeros. When used in the context of MPC, these matrices are often held constant
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throughout the prediction horizon and are updated every time that the MPC is solved.
However, some implementations make B varying throughout the horizon based on the desired
trajectory of the COM since the relative distance between the foot and the COM can change
considerably for large temporal horizons. This is not a strict requirement but can aid in
obtaining more robust locomotion, particularly for dynamic gaits. In this work, all of the
matrices are held constant throughout the prediction horizon and are sequentially updated
each time the MPC runs.

5.3 Interconnected Model and Interaction Wrenches

In this section, we will present an interconnected SRB model that considers interaction forces
between agents (see e.g., Fig 5.2). In addition, we discuss how the interaction forces can be
obtained in closed form, which will be important when creating the data-driven model for
two agents. We first define the connection point on agent i to be pi = pcom

i +Rid̄i, where d̄i
is the relative distance between the COM and the connection point and is constant for all
agents. Furthermore, the velocity and acceleration of the interaction point are given by

ṗi = ṗcom
i + ω̂iRid̄i

p̈i = p̈com
i +

(
ˆ̇ωiRi + ω̂iṘi

)
d̄i. (5.4)

We may then define the interconnected dynamics for the motion of each individual agent
subject to interaction forces. The equations are presented for two agents but generalize to
any number of agents with some minor additional algebraic manipulation. In particular, the
two agent interconnected dynamics are given by

p̈com
i =

1

mtot

(
4∑

k=1

fi,k +
pi − pj

∥pi − pj∥
λij

)
− ḡ

ω̇i = I−1

(
4∑

k=1

r̂i,kfi,k + R̂id̄i
pi − pj
∥pi − pj∥

λij − ω̂iIωi

)
Ṙi = ω̂iRi, (5.5)

where λij ∈ R represents the magnitude of the interaction force between agent i and j, and
(pi − pj)/∥pi − pj∥ represents the normalized vector pointing from the connection point on
agent i to the connection point on agent j. It is important to note that λij = λji since
this is only a magnitude of the interaction force and considers no direction information. By
combining (5.4) and (5.5), one can obtain the nonlinear dynamics of the connection point.
We can now define the rigid distance constraint between agents i and j as

∆ij = (pi − pj)
⊤(pi − pj) = ∆ij|0, (5.6)
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Figure 5.2: Visual representation of two SRB models subject to interaction forces. This
concept extends to more agents as well.

where ∆ij|0 is the distance between the connection points and is constant for the duration of
locomotion. Differentiating this holonomic constraint twice, the dynamics of the holonomic
constraint are defined as

∆̇ij = (ṗi − ṗj)
⊤(pi − pj) = 0

∆̈ij = (p̈i − p̈j)
⊤(pi − pj) + (ṗi − ṗj)

⊤(ṗi − ṗj) = 0. (5.7)

Using (5.7) together with (5.5) and (5.4), we are able to solve explicitly for the interaction
forces λij between agent i and j given their respective state vectors. Although we may
obtain the interaction forces in closed form fairly simply for two agents, extending this to
many agents is very complex and would require considerable computation time, motivating
the decision to obtain the interaction forces via a data-driven model. However, this closed-
form expression is used during the data collection for this control scheme due to limitations
in the simulation environment considered. This will be discussed further in Section 5.5.

5.4 Integration of Physics- and Data-Based Models

With the interconnected SRB dynamics in hand (5.5), this section presents the linearized
SRB dynamics subject to external forces in a centralized manner for two agents. In particular,
this is an extension of (5.3) to the multi-agent setting while considering the interaction forces
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and is given by

x̃k+1 = Ãx̃k + B̃ũk + C̃λk + d̃. (5.8)

In this notation, we define x̃k := col(x1,k, x2,k) and ũk := col(u1,k, u2,k), which denotes the
collective state and input for both agents, respectively. Furthermore, λk ∈ R represents
the magnitude of the interaction force. Note that this is a simpler notation than what was
considered in (5.5) and is used in the two agent case since λij = λji. We then define our
state matrices to be

Ã =

[
A1 012

012 A2

]
∈ R24×24, B̃ =

[
B1 012

012 B2

]
∈ R24×24, C̃ =

[
C1

C2

]
∈ R12, d̃ =

[
d1
d2

]
∈ R12,

where Ai, Bi, and di are the matrices and vectors corresponding to agent i, and 012 ∈ R12×12

is a matrix of zeros. Finally, Ci is the input distribution matrix for the interaction force.
More specifically, we have

Ci =


03

1
mtot

pi−pj
∥pi−pj∥
03

I−1 ˆ̄di
pi−pj

∥pi−pj∥

 ∈ R12 ∀i ̸= j.

This matrix maps the magnitude of the interaction force to both forces and torques induced
about the COM, while it also adds a direction to the magnitude, where we may assume that
the interaction force is applied along the vector pointing from one connection point to the
other. This is a reasonable assumption since the robots are connected via ball joints, and the
frictional force preventing rotation is negligible. By considering only the magnitude of the
interaction force, we are able to reduce the number of variables that must be approximated
using a data-driven model, as will be discussed more thoroughly in what follows.

In order to use (5.8) in a predictive control framework, one would need to obtain the in-
teraction forces throughout the prediction horizon. This is particularly difficult considering
the interaction forces nonlinearly depend on the state and the input. In turn, one would
need to consider a successively linearized version of the closed-form expression or an NMPC
formulation would be required [127, 128]. In order to alleviate this, we consider a data-driven
approach to model the interaction forces. Consider the behavioral model given by

Up

Yp
Uf

Yf

 g =

uini
yini
uf
yf

 ,
for some choice of inputs denoted by u and some outputs denoted by y. In this notation,
(·)ini denotes the previous input-output pairs, and (·)f represents the future predicted input-
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output pairs. This is the same form as that which was provided in the previous chapters.
We can then once again use the 2-norm approximation for the vector g and end up with a
model of the form

yf = G

uini
yini
uf

 .
Unlike the previous chapters, here we are not modeling the motion of the system. I.e., we
are not trying to control the position or velocity of the system by using this data-driven
model. To this end, we choose the input, u, to be the GRF at the contacting legs and take
the output, y, to be the magnitude of the interaction force (i.e., λ). Since the output is
taken to only be λ, we will move forward with the following model notation for the sake of
transparency:

λf = G

uini
λini
uf

 . (5.9)

It is assumed that the data collected to create this model is done so on an interconnected
system of two agents. Therefore, we have λf ∈ RN , λini ∈ RTini , uf ∈ R24N , and uini ∈ R24Tini ,
whereN is the prediction horizon, and Tini is the estimation horizon. Note that as the number
of agents increases, the size of λ(·) depends explicitly on the configuration of the connection
graph, while the size of u(·) grows linearly with the number of agents. Using this model, we
now have a mapping between the GRF of each agent and the magnitude of the interaction
forces between them. In this case, we chose the inputs to the model to be only the GRF from
each agent. However, one could also consider using a portion of the state as an input, such as
incorporating the velocity or orientation of each agent. In contrast, it has been observed that
including additional inputs does not have a considerable impact on performance. Moreover,
it is particularly difficult to obtain a sufficiently persistently exciting signal for the COM
states, which can result in degraded performance and, in many cases, instability. Finally,
including additional states as inputs to the data-driven model would decrease the sparsity
of the problem, thereby slowing down solving times, which directly contradicts one of the
goals of this chapter.

Moving forward, we will adopt the notation such that uf,k denotes the GRF for both agents
at prediction step k for the data-driven model, which is identical to ũk in (5.8). Similarly,
λf,k = λk will denote the interaction force at prediction step k, and we will denote Gk to be
the kth row of the N -step state transition matrix G. We may also decompose the G matrix
into its future and previous portions. More specifically, using the new notation, we have

λk = G ini
k

[
ũini
λini

]
+ Gu

k ũk, (5.10)

where Gu
k and G ini

k contain the columns of G corresponding to the input and the previous
data, respectively. With this in hand, we may now combine (5.10) with (5.8), resulting in a
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centralized model for collaborative locomotion given by

x̃k+1 = Ãx̃k + (B̃ + C̃Gu
k )ũk + C̃G ini

k

[
ũini
λini

]
+ d̃. (5.11)

Analogous to Chapter 4, we now aim to distribute this model for computational purposes.
We begin by decomposing G into each agent’s local and coupling dynamics given by

G =

[
G1,1 G1,2

G2,1 G2,2

]
. (5.12)

From here, we once again adopt a one-step communication delay protocol and obtain our
distributed model as follows:

xi,k+1 = Ai xi,k + (Bi + CiGu
ii,k) ui,k + CiG ini

ii,k

[
ui,ini
λi,ini

]
+ di︸ ︷︷ ︸

Local Dynamics

+Cj

∑
i ̸=j

Gij,k

uj,ini|t−1

λj,ini|t−1

uj,k|t−1


︸ ︷︷ ︸

Coupling Dynamics

. (5.13)

Using this approach, the sparsity of the dynamics (i.e., the equality constraints in the QP)
increases dramatically compared to the approach considered in Chapter 4. Moreover, under
this control scheme, the size of the problem in terms of the number of decision variables is
unchanged relative to single-agent SRB-based MPC. However, one additional approximation
is made such that the sparsity remains unchanged relative to the single-agent case using the
standard linearized SRB model. In particular, we adopt a one-step communication delay on
all of the input-output pairs, therefore making λ constant each time the predictive controller
is run. It has been observed that this further results in more robust locomotion, easier
tuning, and better tracking of the desired trajectory. More specifically, we have

λ = G

uini|t−1

λini|t−1

u |t−1

 . (5.14)

Our final model, which will be used during both simulations and experiments, is then de-
scribed by

xi,k+1 = Ai,k xi,k +Bi,k ui,k + Ci,kGk

uini|t−1

λini|t−1

u |t−1

+ di, (5.15)

where it is evident that the two rightmost terms are constant each time the planner is solved.
Finally, with the model in hand, we may now present the trajectory planner that will be
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Figure 5.3: This figure displays the reduced-order simulation setup in RaiSim. The blue
arrows represent the GRF, the purple spheres represent the ball joints at the connection
point, and the purple cylinder represents the bar rigidly connecting the agents.

used during simulations and experiments

min
(xi,ui)

N−1∑
k=0

(
∥xik − xdes,i

k ∥2Q + ∥uik∥2R
)

s.t. xi,k+1 = Ai,k xi,k +Bi,k ui,k + Ci,kG

ũini|t−1

λini|t−1

ũ |t−1

+ di

uik ∈ U , k = 0, . . . , N − 1, (5.16)

where xdes,i
k denotes the desired trajectory for agent i at prediction step k. Furthermore, the

feasible set U is taken to be the linearized friction cone, i.e., U = FC := {col(fx, fy, fz)|fz >
0, |fx| ≤ µ√

2
fz, |fy| ≤ µ√

2
fz}, where µ denotes the friction coefficient.

5.5 Simulations and Experiments

The purpose of this section is to provide validation of the approach proposed in this chapter.
This is done through a series of simulations and experiments, starting with only the reduced-
order model, then proceeding with the full-order implementation.
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5.5.1 Data Collection Procedure

Before moving to the experimental results, we must first provide the details of the data
collection. Analogous to Chapter 4, the data is collected in the simulation environment
RaiSim [188] for the interconnected system of robots. In contrast, the data collected here is
based only on the reduced-order SRB model instead of the full-order model. In particular,
two interconnected trunks are simulated without additional appendages, and external forces
are applied on the COM of each respective trunk emanating from the desired foot location.
See Fig. 5.3 for a representative example of the simulation setup. This effectively simulates
only the interconnected SRB model. In order to maintain stability during the data collection,
the model described in Section 5.2 is used in tandem with an MPC framework in a purely
decentralized manner to calculate the forces required to propel the system forward. While
this method does stabilize the network of robots, we aim to improve performance through the
addition of a data-driven approximation of the interaction forces without adversely affecting
the solve times. Finally, it should be noted that the data is collected while using a trot gait
that has a step frequency of 5 Hz and is commanded to move forward with a desired velocity
of 0.5 (m/s).

Since the input to the data-driven model is taken to be the GRF, a random perturbation
of up to 10 (N) is added to the prescribed GRF at each time step during data collection in
order to maintain persistence of excitation for the input. In terms of the output, RaiSim
does not have a manner in which internal forces of a system can be obtained. Therefore,
the closed-form expression for the interaction forces described in Section 5.3 is used to
calculate the corresponding output of the data-driven model, λ, in an offline manner to
construct the Hankel matrices. The lack of the ability to obtain the reaction forces from the
simulator is a pertinent limitation of the study. In moving to a greater number of agents,
it is imperative to have the ability to determine the interaction forces without requiring
a closed-form expression, as the complexity of such equations increases dramatically with
the number of agents. However, using a closed-form expression is not prohibitive for the
two-agent case considered in this chapter.

5.5.2 Reduced-Order Simulations

This section discusses the initial validation of the proposed model in simulation using only
the reduced-order model (see Fig. 5.3), and provides a comparison to using a strictly model-
based approach. In particular, the GRF and trajectory for nominal locomotion can be found
in Fig. 5.4 for agent 1, where it is evident that the system is able to maneuver over flat
ground in a stable manner. In all of the simulations presented in this section, each robot
is commanded to move forward at a velocity of 0.5 (m/s) with a height of 0.26 (m). All
other states are commanded to remain zero. During nominal locomotion, the interaction
forces remain small (less than 1 (N) on average) and do not substantially influence the gait.
However, when external forces are applied to the system, the interaction forces increase
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Figure 5.4: This figure shows the trajectory produced by the proposed MPC (top), the
prescribed GRF for the front right leg (bottom left), and the prescribed GRF for the rear
right leg (bottom left) for agent 1. The data pertaining to agent 2 follows a similar trend.
Each agent aims to track a velocity of 0.75 (m/s) and a standing height of 0.26 (m).

Figure 5.5: This figure shows |λ| when using the standard model-based approach (top) and
the proposed approach (bottom) for agent 1. The horizontal line indicates the average of
|λ| for each respective case. It can be observed that both the peak and average are reduced
when using the proposed approach.

considerably. Finally, each agent considers the following parameters for the proposed planner:
Q = diag(1e4, 1e4, 8e5, 1e3, 1e3, 1e3, 1e4, 1e5, 1e3, 1, 1, 1) and R = I ⊗ diag(0.1, 0.1, 0.01),
where I is an identity matrix of an appropriate size, and ⊗ represents the Kronecker product.
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Figure 5.6: This figure shows the distribution of the interaction forces when subject to a
periodic disturbance over 15 seconds and corresponds to the simulation in Fig. 5.5. The left
plot shows the interaction forces produced when using the purely decentralized MPC, and the
plot on the right shows the results when using the proposed distributed MPC that considers
the approximate interaction forces. The vertical lines represent the average (center lines) and
standard deviations. It is evident that the proposed algorithm produces lower interaction
forces more consistently, and has a tighter distribution around zero.

In order to examine the effect of the interaction forces on locomotion and how the proposed
approach compares to the strictly model-based approach, the next set of simulations subjects
both approaches to an external force of the form ExtFrc1 := col (20 sin(2.6 t), 30 sin(4.7124 t), 0)
in the x, y, and z directions, respectively, and is applied on the COM of one agent. The
plots displaying |λ| for both the proposed and model-based approach subject to this external
force are provided in Fig. 5.5. Although the proposed approach leads to more oscillatory
interaction forces, the mean absolute value of the interaction force is reduced by approxi-
mately 30%, while the peak force decreases by 11%. Furthermore, the distributions of the
interaction forces for the same simulations are provided in Fig. 5.6. This demonstrates
that the interaction forces using the proposed approach tend to produce lower interaction
forces more consistently, leading to a smaller standard deviation from the mean (which is
approximately zero in both cases). The external force applied in this simulation is signif-
icant. However, in order to push the algorithms to their limit, an additional simulation
was conducted with an even larger external force placed on the second agent as well of the
form ExtFrc2 := col (50 sin(12.5512 t), 25 sin(14.7418 t), 0). In this scenario, the proposed ap-
proach still realized about a 19% improvement on the average |λ| over the purely model-based
approach. In addition, the peak force is reduced by approximately 10%. The improvement
is smaller compared to the previous scenario, but this is to be expected as the system is
being pushed to the limits.
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Figure 5.7: From left to right, this figure shows snapshots of locomotion subject to unstruc-
tured terrain, a 9 kg payload (75% of the mass of one agent), and extensive pushes.

Figure 5.8: This figure corresponds to a nominal hardware experiment (locomotion over flat,
unobstructed terrain) and shows the trajectory produced by the proposed MPC (top), the
prescribed GRF for the front right leg (bottom left), and the prescribed GRF for the rear
right leg (bottom left) for agent 1. Each agent aims to track a forward velocity of 0.5 (m/s)
and a standing height of 0.26 (m). The agents also aim to track −0.1 (m/s) in the lateral
direction to combat drift.

5.5.3 Hardware Results

Finally, this section provides experimental validation of the proposed approach on hardware.
Here, we consider two quadrupeds constrained through a ball joint, similar to the simulations.
Analogous to the previous chapters, the optimal trajectory and force profile produced by the
planner are passed to the low-level torque controller for tracking. The gains considered for
the low-level controller are 1 for torque, 1e4 for force tracking, and 1e6 for virtual constraint
tracking (trajectory tracking). When using hardware, it is difficult to increase the force gain
due to the compliance at the foot. When simulating the full-order system, the force gain can
be increased, and the gains on virtual constraints can be lowered, which is often desirable.
This is especially the case when considering sub-optimal estimation techniques for position
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Figure 5.9: This figure shows an experiment of two constrained robots maneuvering over
rough terrain composed of randomly placed wooden boards on the ground. The top plot
corresponds to the desired trajectory produced by the planner, and the optimal GRFs for
the front right and rear right lefts are shown in the bottom left and right, respectively. Each
agent aims to track a forward velocity of 0.5 (m/s) and a standing height of 0.26 (m). The
data shown here corresponds to agent 1, and the second agent shows similar trends.

and velocity of the COM, as is done in this work. Namely, a simple kinematic estimator is
used. The noise from the COM estimate propagates into the control law and leads to noisy
torques. However, providing a good force profile to the low-level controller, even when using
lower gains, helps with attenuation.

When used in tandem with the low-level controller, we use slightly different gains for the
planner than that which was used during reduced-order simulations. In particular, we have
Q = diag(5e4, 5e4, 8e5, 1e4, 1e4, 1e3, 1e4, 1e4, 1e4, 1, 1, 1) and R = I ⊗ diag(0.1, 0.1, 0.01),
where I is an identity matrix of an appropriate size, and ⊗ represents the Kronecker product.
Snapshots of several experiments can be found in Fig. 5.7, showing the team of robots subject
to various disturbances, including payloads, unstructured terrain, and external forces. In Fig.
5.8, the nominal trajectory and the optimal GRFs produced by the proposed planner are
provided. Although the trajectory is slightly oscillatory, the resulting motion of the system,
when used in tandem with the low-level torque controller, is smooth. Furthermore, it is
important to note that the GRF profile follows a more ideal trend than that which was
presented in Chapter 4. However, this can likely be attributed to the fact that the planner
used in this chapter is updated 4 times faster. Furthermore, the force profile of the planner
proposed in this chapter follows a more ideal shape, and results in smoother locomotion.
In order to examine the system when subject to rough terrain, the team of robots was also
subject to unstructured wooden blocks that were randomly scattered on the ground. Similar
to the nominal case, the optimal trajectory and GRF produced by the planner can be found
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Figure 5.10: This figure shows an experiment of two constrained robots walking subject to
a 9 kg payload, which is approximately 72% of the total mass of one agent. The top plot
corresponds to the desired trajectory produced by the planner, and the optimal GRFs for
the front right and rear right lefts are shown in the bottom left and right, respectively. Each
agent aims to track a forward velocity of 0.5 (m/s). The data shown here corresponds to
agent 1, and the second agent shows similar trends.

in Fig. 5.9. Even when subject to such terrains, the team of robots is able to maneuver in
a robust manner. As a final test for robustness, the team of robots is subject to a 9 (kg)
payload, and the results of the planner can be found in Fig. 5.10. This payload corresponds
to approximately 72% of the mass of a single agent and is completely unknown to the planner
and low-level controller. Although it is difficult to tell from the plot, the resulting standing
height only reached approximately 24.5 (cm), while the commanded height was 26 (cm).
This offset in the height tracking is also reflected by the positive vertical velocity command
given by the planner in an attempt to raise the height. However, the network of robots still
maneuvers successfully. In addition to robustness testing, it is important to examine how
the system performs when using a time-varying input, as this would be how it is used in
practice. For this reason, we finally provide a plot displaying the trajectory from the planner
as well as the desired velocity (obtained from a joystick) and actual velocity in Fig. 5.11. It
can be observed that the planner is able to track the joystick command with a slight offset.

5.6 Summary

This chapter presented a manner in which physics- and data-based methods can be used in
tandem to address holonomically constrained multi-agent systems. In particular, behavioral
systems theory is leveraged to parameterize the interaction forces induced by the rigid con-
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Figure 5.11: This figure shows an experiment of two constrained robots tracking joystick
commands, where the data corresponds to agent 1. The commanded joystick velocity ((·)des),
planner velocity ((·)planner), and actual velocity are all provided.

straint. At the same time, the local dynamics of each agent are described by the well-known
SRB model. When combined with a predictive control framework, the resulting interaction
forces are reduced compared to using a physics-based model alone. In particular, the reac-
tion forces are reduced by upwards of 30% on average when subject to external disturbances,
which is a considerable improvement. The attenuation of the interaction forces is further
complimented by the fact that the proposed method does not change the computation time
or sparsity of the predictive controller. The proposed method was also demonstrated to be
robust during hardware experiments, where the full hierarchical control scheme is utilized.
Namely, an optimal trajectory and force profile is determined in a distributed manner using
a high-level controller based on the proposed model, and the result is tracked using a non-
linear whole-body controller at the lower level. The system was subject to various unknown
terrains and disturbances and was able to maneuver in a stable manner nonetheless. In
addition, the gait produced using the proposed method is much smoother than using just
the low-level controller or a purely data-driven method for planning. This is likely due to
the improved force profile that is provided to the low-level controller.



Chapter 6

Conclusions and Future Directions

This dissertation details hierarchical control architectures based on nonlinear control tech-
niques and behavioral systems theory in order to obtain stable and robust quadrupedal
locomotion. The purpose of this chapter is to provide a summary of this work, followed by
future directions of research and concluding remarks.

6.1 Dissertation Contributions

6.1.1 Virtual Constraint Based Torque Controller

We systematically created a low-level controller to perform torque control for quadrupedal
locomotion. However, the formulation can be generalized and could then be applied to many
other robotic systems with relative ease. This methodology was based on virtual constraints
and partial feedback linearization to control the COM of the quadruped. More specifically,
we proposed an optimal control law based on a strictly convex QP, subject to feasibility
constraints such as the torque limits and friction cone. In addition, we provide a relaxation on
the partial feedback linearization subject to a CLF in order to obtain rigorous guarantees in
terms of stability, convergence, and robustness. This formulation was examined analytically,
resulting in the following two results; 1) owing to the structure of the strictly convex QP
and the continuity of the dynamics, we showed that the solution to the QP is continuous
with respect to the state in some neighborhood of the periodic orbit, which is essential when
leveraging Poincaré techniques, and 2) the orbit is invariant under the flow of the closed-
loop dynamics, and the proposed control law is ISS on some neighborhood of the orbit. This
control law was further validated in both simulation and on hardware for a trotting gait
when subject to various unknown uncertainties, including pushes and rough terrain, and
resulted in stable locomotion. Furthermore, it was shown that the CLF remained positive,
while its derivative remained negative for the vast majority of the experiments, indicating
that rapid exponential stability was achieved, even in the experimental case.

Although excellent results were obtained in both simulation and on hardware, the trajectory
provided to the low-level controller was heuristically chosen. In doing so, we obtain sub-
optimal motions that can occasionally be jittery or oscillatory. This is also, in part, due to
the aggressive or greedy nature of the low-level controller, and the lack of consideration for
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future states. This naturally indicates the need for a higher-level trajectory planner such
that an optimal trajectory can be provided to the controller proposed here.

6.1.2 Data-Driven Reduced-Order Models

We designed a new trajectory planner that was based on behavioral systems theory; a data-
driven method. In particular, this method was used to, in some sense, recreate the SRB model
using a direct data-based model. This model was then cast into the form of a convex QP to
serve as a trajectory planner for a single quadruped, where the optimal solution was passed
to the low-level controller proposed in Chapter 2 for tracking. Instead of using the DeePC
approach as has been done in other works, we consider an approximation, which considerably
reduced the number of decision variables. In turn, this reduced the computation time,
yielding a computationally tractable real-time planner. This planner was further validated
both in simulation and on hardware to display the efficacy of the results. In particular,
when using this hierarchical control scheme, the robot was able to robustly maneuver over
rough and unstructured terrain, including loose wooden blocks, gravel, mulch, grass, and
substantial weeds. Furthermore, the robot was able to sustain payloads and could resist
external pushes and pulls.

This controller was finally evaluated in three additional ways. Specifically, this work ex-
amined 1) how the controller performs when considering different locomotion parameters
without collecting new data, 2) how this method compared to the SRB for which it was
meant to emulate, and 3) whether or not the trajectory planner could be used with a differ-
ent low-level controller in a stable manner. In doing so, it was demonstrated that, without
collecting additional data for a new model, the system was able to tolerate both a 25% in-
crease and decrease in the stance time for the trot gait (160 (ms) and 250 (ms), respectively).
In addition, a walk gait was found to be feasible with the trotting model as well. In terms of
the comparison between the traditional SRB model, it was shown that the proposed method
was able to produce comparable trajectories. Finally, in order to determine whether or not
the planner was agnostic to the choice of low-level controllers, we used the trajectory plan-
ner in tandem with the built-in low-level controller provided by the manufacturer, where it
was observed that it works but is less robust. It was determined that this was due to the
fact that, in the case of using the manufacturers’ low-level controller, the planner ran in
open-loop since the manufacturer restricts access to some pertinent information.

6.1.3 Data-Driven Multi-Agent Collaborative Locomotion

We proposed an extension to the data-driven method considered in the single agent case
to holonomically constrained multi-agent collaborative legged locomotion. To this end, we
employed a model based on behavioral systems theory applied to the sophisticated and
high-dimensional structure induced by the holonomic constraints for legged robots. The
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reduced-order model is formulated in a centralized manner so as to consider the graph in-
duced by the holonomic constraints such that it is encapsulated in the resulting model. The
aforementioned model was then used in tandem with distributed predictive control tech-
niques to consider future states while also allowing for the computational demand to be
shared across agents. Using a one-step communication delay when distributing allows the
algorithm to consider coupling terms between agents with a slight delay, although it was
shown that this is a reasonable approach and resulted in robust locomotion. This method
was tested on hardware in a variety of scenarios, similar to the single-agent case. Namely,
stable locomotion was shown when under the influence of pushes, pulls, and payloads, as well
as rough terrain and various outdoor environments. Finally, the scalability of this approach
was also examined. In particular, a compound simulation with five agents was provided
that shows the agents collectively transporting a large payload while also maneuvering over
wavering terrain.

6.1.4 Combining Physics- and Data-Based Methods

The final portion of this dissertation detailed how traditional models can be integrated with
data-based models to capitalize on their individual strengths for multi-agent collaborative
locomotion. In particular, the SRB model has proven to be a very good reduced-order
parameterization for legged robots, while the interaction forces between robots are very
complex. For this reason, it was proposed that the two methods be combined such that
we have the SRB model subject to interaction forces, where a behavioral model is used to
predict the magnitude of the interaction force between agents. Applying this methodology
to an interconnected reduced-order system of two agents, it was shown that the interaction
forces can be reduced by upwards of 30% in some scenarios, while the peak force is reduced
by up to 11%. However, the interaction forces under the proposed approach exhibit more
oscillatory behavior, which could be detrimental in some scenarios. Conversely, the reduction
in interaction forces is an important step toward being able to robustly carry objects that are
fragile since large forces could cause damage. This approach was further evaluated in tandem
with the low-level controller in a hierarchical framework such that the proposed algorithm
could be tested on hardware. Similar to the other chapters, various robustness tests were
conducted, including subjecting the system to external disturbances and maneuvering over
rough and unstructured terrain. The system under this control approach was able to move
in a stable manner across all of the tested conditions, further emphasizing the efficacy of the
trajectory planner and overall control architecture.

6.2 Future Directions

There are several interesting extensions at multiple levels. In particular, when considering
the low-level controller, the fully data-based planners, and when combining physics and
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data-based methods.

Low-Level Controller: The low-level controller was shown to be robust. However, there
are a number of ways in which there is room for improvement. In particular, the CLF
considered in the low-level controller operates on the output dynamics and does not consider
any of the true nonlinear dynamics of the system. One interesting extension would be to
reformulate the problem to consider a passivity-based approach for the output dynamics. In
doing so, some of the full-order nonlinear dynamics would appear in the output dynamics.
Therefore, the CLF that constrains the partial feedback linearization would encapsulate
some of the natural dynamics of the system and may be more representative. In addition,
passivity-based I-O linearization has been shown to be more robust to parameter uncertainty,
particularly pertaining to the mass, which could lead to improved locomotion when carrying
unknown payloads.

Purely Data-Driven Trajectory Planning: In Chapters 3 and 4, we discussed the use
of a trajectory planner based solely on a reduced-order data-driven model. These models
aimed to create a mapping between GRF and some motion of the center of mass. However,
since we are interested in a reduced-order model for planning purposes, it would be worth
it to explore simpler input-output pairs. This could be, for example, emulating a double
integrator model instead of the SRB model, which would aid in reducing computation time
while still potentially describing the dominant dynamics. Conversely, more complex pairs
could be examined, too, such as including the relative position of the feet with respect to the
center of mass to better parameterize the torques induced about the COM. There is a trade-
off between computational demand and accuracy. Generally exploring this relationship,
particularly through the chosen input-output pairs, has the potential to provide extremely
valuable insight into data-driven reduced-order models.

More specifically related to the multi-agent setting, one could consider creating a model that
is concerned with the motion of the centroid of a group of robots as opposed to creating a
centralized model that considers the motion of each agent. In particular, one could create a
model where the inputs are the GRF for each agent, while the output is the overall motion
of the centroid of the group, as opposed to the proposed formulation where the motion of
each agent is considered. This could, in turn, allow one to use the agents to collectively
manipulate an object together instead of each agent attempting to accomplish its own goals
subject to interaction forces. Finally, the multi-agent case can be extended to consider the
addition of non-rigid graphs, including both open graphs and serial graphs. This would
allow one to produce time-varying configurations, and to dynamically alter a configuration
to accomplish a task, such as reorganizing in a manner that would allow the team of robots
to navigate a narrow corridor, or spreading out for greater stability when maneuvering over
rough terrain.

As a final note on the purely data-driven case, it would be an interesting line of research to
look into model reduction techniques for the data-driven models. The models considered in
this work require a large set of data due to the nonlinear nature of the system considered.
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In turn, the resulting data-driven model is a fat matrix. The reduction could be done in
a variety of ways, and some work has already been done in this context, including through
the use of the 2-norm approximation used in this work and through the use of singular
value thresholding. However, one could similarly consider methods related to generalized
eigenvalues to obtain a close square approximation to the original model [194]. Obtaining a
square data-driven model is instrumental in being able to use DeePC in a real-time manner,
as this would considerably reduce the number of decision variables.

Extending the Combination of Physics- and Data-Based Models: When considering
the combination of physics- and data-based models, the most evident direction for future
research is extending the method to a greater number of agents. This would be particularly
interesting in terms of examining how scalable the approach is, and how the connection
graph influences the scalability. Additionally, some of the same extensions apply that were
discussed for the purely data-driven multi-agent case as well. In particular, a variety of
graphs could be examined. In some sense, this method seems more amenable to various
configurations since this method is concerned with approximating the interaction forces
directly and is independent of the direction in which the force is applied, so long as the
direction can be reconstructed based on the relative position of the agents. Finally, although
this method was used for multi-agent collaboration, it is also possible that it could be used
to improve a model for a single agent. For example, similar to [61], one may be able to model
the discrepancy between the reduced- and full-order models using BST to improve overall
performance.

6.3 Concluding Remarks

This work presented a hierarchical control scheme that utilizes data-driven methods to con-
trol teams of constrained legged robots. This marks an important step in robot-robot col-
laboration for legged locomotion, and this work can be extended in a multitude of ways such
that future generations of robots can systematically work together to accomplish tasks. We
provided several new formulations and applications of behavioral systems theory and fol-
lowed through with both extensive simulation and experimental results to show the efficacy
of the approaches on real quadrupedal platforms.
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