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Centralized Model Predictive Control for
Collaborative Loco-Manipulation

Flavio De Vincenti and Stelian Coros

Abstract—In this work, we extend the model predictive control
methods developed in the legged robotics literature to collabo-
rative loco-manipulation settings. The systems we study entail
a payload collectively carried by multiple quadruped robots
equipped with a mechanical arm. We use a direct multiple
shooting method to solve the resulting high-dimensional, optimal
control problems for trajectories of ground reaction forces,
manipulation wrenches, and stepping locations. To capture the
dominant dynamics of the system, we model each agent and
the shared payload as single rigid bodies. We demonstrate the
versatility of our framework in a series of simulation experiments
involving collaborative manipulation over challenging terrains.

I. INTRODUCTION

The automation of heavy labor through collaborative, all-
terrain mobile manipulators would have a tremendous impact
on ameliorating human work conditions worldwide. Hardware
capable of such a feat has existed for a long time in the form
of humanoid and arm-endowed quadruped robots [1]. The
coordination and control of these inherently high-dimensional
systems—let alone teams thereof—demand great computa-
tional resources and efficient algorithms, the complexity of
which calls for exceptional software architecture and dynamics
modeling efforts. By instilling cooperative loco-manipulation
skills in multi-robot teams, the safety and productivity of
workers would improve in numerous labor-intensive industries,
including construction, mining, search and rescue, etc.

Our goal is to design a computational framework for the
simultaneous planning and execution of object maneuvering
tasks at the hands of multiple, one-armed quadruped robots,
as shown in Figure 1. Versatility and ease of adaption to
different environments are of great practical interest to any
business benefiting from autonomous walking manipulators.
We specifically value the capability of a collaborative loco-
manipulation (CLM) implementation to manage seamlessly
heterogeneous agents and cope with uneven terrains.

Due to their optimization-based reasoning about state and
input constraints, model predictive control (MPC) methods
appear to be an adequate tool for CLM. However, implement-
ing a trajectory optimization (TO) algorithm for coordinating
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Fig. 1. Two simulated Laikago robots [2] manipulating a wooden beam on
rough terrains. Since all robots influence the object’s motion and, indirectly,
each other’s, a planning algorithm must be able to reason holistically about
the system. Our centralized MPC naturally fulfills this requirement and, by
incorporating stepping locations as optimization variables, enables locomotion
on ditches (top) and slopes (bottom). Recordings of all the experiments can
be found in the accompanying video.

potentially arbitrary numbers of legged machines comes with
significant challenges. Indeed, the collaborative multi-robot
setup naturally translates into very high-dimensional optimal
control problems (OCPs). The states and inputs associated
with each robot directly affect the motion of the manipulated
payload, making the whole system tightly coupled and highly
nonlinear. Furthermore, real-time rates are necessary to guar-
antee robust MPC performance, thus requiring careful software
design and, most importantly, a meditated trade-off between
model accuracy and expressive power.

We address the above problems by proposing an efficient,
centralized, multiple-shooting MPC scheme. Our approach
optimizes the interaction wrenches and motion trajectories of
all robots and the payload over a given time horizon within
a single, sparse TO problem. We achieve efficient solution
times by modeling every agent, including the shared object, as
single rigid bodies; this device allows us to significantly reduce



the size of the resulting OCPs as opposed to methods using
the articulated rigid-body dynamics [12, 30, 31]. Our model
choice further grants faster derivative computations compared
to centroidal dynamics-based implementations [20, 34], and
we find its level of abstraction well justified in the scope of
CLM. Also, to handle any possible payload rotation without
incurring singularities, we parameterize the orientations via
unit quaternions and adopt a Lie group time-stepping scheme
to integrate angular velocities. This strategy embeds the unit-
norm constraints implicitly into the discretized system dynam-
ics and makes variation-based linearizations an unnecessary
complication [9, 15]. Moreover, by including the stepping
locations of each robot in the optimization variables, we
make the system more robust against external perturbations, as
well as internal disturbances induced by other agents. Finally,
we conduct simulation experiments featuring multiple robots
transporting a payload on rough and non-flat terrains to show
the potential and adaptability of our formulation.

II. RELATED WORK

Most existing works on the collaborative control of multi-
agent systems are focused on aerial [8, 29, 32, 36, 38, 39] and
ground [11, 17, 28, 33] vehicles with shared payloads. Despite
a large number of publications about multi-robot systems
(MRSs), which attests to their great significance in the robotics
community, only a few focus on cooperative legged machines,
and even fewer explore CLM. This fact can be attributed to
the extraordinary computational challenge of controlling these
interconnected high-dimensional systems and, on a practical
level, the lack of suitable, commercially available hardware.

The closest works in the direction of collaborative loco-
manipulation study one-armed quadruped robots in isolation
or the locomotion of rigidly connected four-legged machines.
Sleiman et al. [34] adopt a differential dynamic programming
(DDP) method to optimize the trajectories of a four-legged
manipulator interacting with the environment. They base their
implementation on the centroidal dynamics model together
with the dynamics of the manipulated object, and complement
it with self-collision avoidance constraints in a later publica-
tion [10]. In this work, we employ a similar state augmentation
strategy, but we elect to represent all agents and the payload
using the single rigid body dynamics (SRBD) model to keep
a centralized CLM algorithm computationally tractable.

Kim and Hamed [24] tackle the cooperative locomotion
problem by decoupling it into a centralized and a dis-
tributed part. The former describes the dominant dynamics of
each robot using a modified linear inverted pendulum model
(LIPM), and then it plans trajectories for the whole system by
solving a single optimization problem in an MPC scheme; the
optimized trajectories are eventually tracked by the distributed
whole-body controllers running on the robots. The authors
also show a loco-manipulation example where multiple robots
carry a lightweight payload together. Although pioneering,
their CLM demonstration is limited by the simplicity of LIPM
since it does not allow reasoning about torques and angular
momenta.

Fawcett et al. [18] and Kim et al. [25] improve on the cen-
tralized/distributed idea by adopting the SRBD model instead
in a data-driven and purely model-based fashion, respectively.
Fawcett et al. synthesize template models for enabling efficient
planning of squads of holonomically constrained quadruped
robots, while Kim et al. describe both a centralized and a de-
centralized MPC architecture for collaborative locomotion, and
show real-time performance for two interconnected quadruped
robots over a 25ms time horizon. Despite a valuable insight
into the performance of learning-based and distributed control
schemes compared to centralized ones, their work remains in
the scope of multi-agent locomotion, and it does not involve
any cooperative manipulation experiments. Moreover, the short
time horizon makes their MPC demonstrations similar to
those of a reactive controller. Finally, neither of the above
works optimizes for the stepping locations, and all rely on
prefixed gaits. In this work, we overcome these limitations
and formulate the CLM problem as robot-, payload-, and
gait-agnostic. By additionally adopting a custom, sparsity-
exploiting sequential quadratic programming (SQP) solver, we
manage to coordinate up to two robots and a manipulated
object at real-time rates through a single TO.

III. COLLABORATIVE LOCO-MANIPULATION

We formulate CLM as the following nonlinear, discrete-time
trajectory optimization problem:

min
U,X

L(U,X) :=
N−1∑
k=0

lk(xk,uk) + lN (xN ) (1a)

s.t. x0 = xm , (1b)
xk+1 = dk(xk,uk) , (1c)
g(X,U) = 0 , (1d)
h(X,U) ≤ 0 , (1e)

where xk and uk are the states and inputs of the system at
time step k, and xm is the current measured state; we define
the stacked state and input vectors as:

X :=
[
x⊤
0 x⊤

1 . . . x⊤
N

]⊤
and

U :=
[
u⊤
0 u⊤

1 . . . u⊤
N−1

]⊤
.

The scalar functions lk(·) and lN (·) denote the running and
final costs, while g(·) and h(·) are general state-input equality
and inequality constraints, respectively. Finally, dk(·) is the
time-varying discrete dynamics function describing the evolu-
tion of the system at time step k.

By solving (1) over a receding horizon in an MPC fashion,
we seek to realize robust tracking performance in the face
of disturbances and uncertainty. Our modeling choices are
geared toward making a centralized implementation of CLM
as shown in Figure 2 as tractable as possible, while enabling
highly dynamic optimized motions. In the following sections,
we describe in detail the various components of (1).
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Fig. 2. Schematic overview of the proposed method. Our solution entails
a centralized planner interfacing with all agents engaged in CLM. The
user commands specify both the desired linear and angular velocities of
the manipulated object, as well as the gait pattern for each robot. Based
on this information and the measured states of all agents, our centralized
MPC formulates a single optimization problem to compute the discrete-time
trajectories of payload states x0

k , and robots’ states xi
k and inputs ui

k for
i ∈ {1, 2, . . . , R}. The resulting high-level plans are then individually tracked
by all agents using onboard whole-body control (WBC) implementations
[3, 10, 34]. To ensure that the manipulated object closely tracks the output
CLM plans, the end effector poses and manipulation wrenches must be treated
as hard constraints by the robots’ local controllers. This paper focuses on the
centralized MPC strategy at the core of our approach.

A. System Dynamics

Given the high dimensionality inherent to CLM, adopting
the articulated rigid-body dynamics of the whole intercon-
nected system for a centralized implementation is out of the
question. We conjecture that the widespread single rigid body
dynamics [7] provide a good abstraction for representing the
various one-armed agents in CLM scenarios. For this purpose,
we hypothesize the following:

Assumption 1. The legs of the robots are lightweight com-
pared to their bodies and we can neglect their inertial effects.

Assumption 2. The movements of the arms relative to the
robot torsos are restrained and do not significantly deviate
from a default pose, so torso and arm act like a single body.

While the former assumption is prevalent in most state-of-
the-art MPC-based locomotion controllers [6, 15, 16, 19], we
find the latter peculiar to CLM. If we picture two people
collaboratively carrying a heavy object, we can expect that
their torsos and hands will keep a constant relative pose most
of the time. Indeed, when lifting hefty loads, humans bring
their hands closer to their bodies to reduce the momenta
weighing on their backs, thus restricting the relative move-
ments between arms and torso [23]. Also, the satisfaction of
Assumption 2 corroborates Assumption 1 in that the combined
weight of the base and arm would make the legs comparably
more lightweight. These observations motivate our decision to

Fig. 3. Graphical description of the CLM system. All robots and the
manipulated object are modeled as single rigid bodies with local frames Bi

and states xi. Each robot interacts with the environment through ground
reaction forces f if and with the payload through a manipulation force f ih
and torque τ i

h. We additionally model as input the position rif of each foot
relative to its robot’s center of mass.

model the robots in CLM as single rigid bodies. Nevertheless,
if any of the above hypotheses gets sometimes violated, we
expect that the MPC feedback loop will reject most model
mismatches as disturbances.

Continuous Dynamics: We view CLM as an ensemble of
interacting floating rigid bodies: one for the payload and
one for each robot. In this unified representation, the robots
exert forces on the environment through their point-contact
feet and wrenches on the passive, manipulated object through
their surface-contact hands. Figure 3 contains a schematic
illustration of the system.

We assume that each robotic hand is rigidly attached to the
object, and its pose with respect to the payload local frame
B0 is fixed; therefore, knowing the poses of all rigid bodies
implies knowing the configuration of each mechanical arm
through inverse kinematics (IK). Let R be the total number of
robots and the index i ∈ {0, 1, . . . , R} identify the payload if
i = 0 or the ith robot if i > 0. Then, we define the state of
each rigid body at time t ∈ R as:

xi :=
[
pi⊤ qi⊤ ṗi⊤ Ωi⊤]⊤ ,

where pi ∈ R3, qi ∈ S3 ⊆ R4, ṗi ∈ R3 and Ωi ∈ R3

represent the position, orientation, linear velocity, and angular
velocity of the ith rigid body, respectively. All quantities are
defined in an inertial frame I except the angular velocity Ωi,
which is expressed in the ith body frame Bi.

We associate each foot f ∈ {LF, RF, LH, RH}1 and each
hand h of the robots with a corresponding input, namely:

ui
f =

[
f i⊤f ri⊤f

]⊤
,

ui
h =

[
f i⊤h τ i⊤

h

]⊤
,

where f if ∈ R3 is the ground reaction force, rif ∈ R3 is the foot
position with respect to the robot’s center of mass expressed in

1Throughout this manuscript, LF denotes the left-front limb, RF the right-
front, LH the left-hind, and RH the right-hind.



the inertial frame, and f ih, τ
i
h ∈ R3 are the manipulation force

and torque, respectively. Since the payload can only move due
to the robots’ actions, ui

f and ui
h are defined only for i > 0.

For convenience, we define the following stacked input vector:

ui :=
[
ui⊤

LF ui⊤
RF ui⊤

LH ui⊤
RH ui⊤

h

]⊤
.

We use a binary variable sif ∈ {0, 1} to enforce different
gait patterns; similarly to [4], sif is set to 1 if and only if the
f th foot of the ith robot is in contact with the ground at time
t. Then, we can describe the dynamics evolution of the ith
robot as:

p̈i :=
1

mi

f ih +
∑
f

sif f
i
f

+ g , (2a)

Ω̇
i
:=
(
Ii
)−1

[
−Ωi × IiΩi +

(
qi
)−1 ∗(

τ i
h + rih(x

0,xi)× f ih +
∑
f

sifr
i
f × f if

)]
,

(2b)

where mi ∈ R is the robot’s lumped mass, Ii ∈ R3×3 is its
lumped moment of inertia in the body frame Bi, rih(·) is the
position of the hand with respect to the robot’s center of mass
in the inertial frame I, g ∈ R3 is the gravitational acceleration
vector, and ∗ denotes the quaternion multiplication operator.
We remark that, because the hands are fixed to the manipulated
object, rih(·) is a function of the object state x0 and the ith
robot state xi. Analogously, we define the payload dynamics:

p̈0 := − 1

m0

∑
i

f ih + g , (3a)

Ω̇
0
:=
(
I0
)−1

[
−Ω0 × I0Ω0 −

(
q0
)−1 ∗(∑

i

τ i
h + (pi + rih(x

0,xi)− p0)× f ih

)]
.

(3b)

The object dynamics equations (3) are solely affected by the
wrenches applied by all robots, thus making collaboration
crucial for completing any desired manipulation task.

Discretization: To embed the continuous dynamics (2) and
(3) into the finite dimensional nonlinear programming (NLP)
problem (1), we must first convert them into the discrete-time
form (1c). Given a time horizon T ∈ R>0, we sample states
and inputs at N ∈ N grid points over the prediction interval
[t, t + T ). We employ a zero-hold parameterization of the
control inputs ui to integrate the system dynamics equations
over each shooting interval of duration ∆t ∈ R. We determine
the step size as ∆t := T/(N + 1), and we denote a quantity
sampled at time tk = t + k∆t,∀k ∈ N with the subscript k;
for instance, xi

k, ui
k, etc. Then, we discretize the continuous

dynamics (2) and (3) using the following numerically stable,

Lie group semi-implicit Euler method:

pi
k+1 = pi

k +
∫ tk+1

tk
ṗidt ≈ pi

k + ṗi
k+1∆t , (4a)

qi
k+1 = qi

k +
∫ tk+1

tk
q̇idt ≈ qi

k ∗ exp(Ω
i
k+1∆t) , (4b)

ṗi
k+1 = ṗi

k +
∫ tk+1

tk
p̈idt ≈ ṗi

k + p̈i
k∆t , (4c)

Ωi
k+1 = Ωi

k +
∫ tk+1

tk
Ω̇

i
dt ≈ Ωi

k + Ω̇
i

k∆t , (4d)

where exp: R3 → S3 is a Lie-group exponential function
which, for unit quaternions, takes the following closed form:

exp(v) :=

{
cos( 12∥v∥) +

v
∥v∥ sin(

1
2∥v∥) ∥v∥ ̸= 0

1 ∥v∥ = 0
.

We remark that (4a) and (4b) adopt the quantities ṗi
k+1 and

Ωi
k+1 computed for time step k + 1; these are obtained from

the expressions (4c) and (4d), respectively. Equation (4b)
integrates the angular velocity Ωi

k from the starting orientation
qi
k without relinquishing the unit quaternion space. Thus, if

qi
k satisfies the unit norm constraint and represents a valid

rotation, qi
k+1 will do as well.

Finally, by grouping the equations (4) for every rigid body
i together, we can express the discrete dynamics equation of
the system in the form (1c):

xk+1 = dk(xk,uk) , (5)

where

xk :=
[
x0
k x1

k . . . xR
k

]⊤
and

uk :=
[
u1
k u2

k . . . uR
k

]⊤
are, respectively, the state and input vectors of the entire
system as defined in (1). We highlight that the dependency on
k of dk encapsulates the contributions of the gait-dependent
phase variables sik,f .

B. General Constraints

We codify the general constraints (1d) and (1e) by extending
the formulation proposed by Bledt and Kim [4] for four-legged
systems to one-armed quadruped robots.

Equality Constraints: Every time a foot ends a swing phase
and lands, it must come in contact with the ground. To this
end, we represent the terrain as a 2.5D map zg : R2 → R
mapping x- and y-coordinates to the ground height; given the
position pi

k,f = pi
k + rik,f of the f th foot of the ith robot at

time step k, we can write:(
sik−1,f − 1

)
sik,f

[
pi
k,f,z − zg(p

i
k,f,x,p

i
k,f,y)

]
= 0 , (6)

where the subscripts x, y and z denote the corresponding
coordinates in R3.

We enforce a contact consistency constraint to ensure that
a foot does not move during stance phases:

sik−1,f s
i
k,f

(
pi
k−1,f − pi

k,f

)
= 0 . (7)
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Fig. 4. Geometric representation of a ditch. We model ditches as lines
ajx+ bjy + c on the xy-plane coupled with a width measure dj .

We assign pi
−1,f to the current foot position in the real world,

so that the enforcement of (7) yields an input ui
0,f consistent

with the measured state of the system. Eventually, we assemble
(6) and (7) for all k, i > 0, and f to form the general equality
constraints (1d) for our TO problem.

Inequality Constraints: Given the ith robot’s leg and arm
lengths lif and lih, respectively, we enforce kinematic limits for
all limbs through the following inequality constraints:

∥rik,f − rij,f (x
i
k)∥ − lif ≤ 0 , (8a)

∥rik,h − rij,h(x
i
k)∥ − lih ≤ 0 , (8b)

where rij,f (·) and rij,h(·) are the joint locations with respect
to pi

k from which the leg and arm stem; they depend only on
the robot’s state xi

k.
To prevent a robot from pulling the ground with its feet, we

write
−sik,f

[
f ik,f · ng(p

i
k,f,x,p

i
k,f,y)

]
≤ 0 , (9)

where ng(·) is the unit vector normal to the ground where the
foot is located.

We enforce linearized friction cone constraints for each foot
through the following inequalities:

|f ik,f · txzg (pi
k,f,x,p

i
k,f,y)| − µf ik,f · ng(p

i
k,f,x,p

i
k,f,y) ≤ 0 ,

(10a)

|f ik,f · tyzg (pi
k,f,x,p

i
k,f,y)| − µf ik,f · ng(p

i
k,f,x,p

i
k,f,y) ≤ 0 ,

(10b)

where µ ∈ R is the static friction coefficient, and txzg (·) and
tyzg (·) are unit versors tangent to the ground and lying in the
xz- and yz-planes, respectively.

Finally, in order to cope with unstructured terrains, we
model ditches running along lines given by the equation
ajx + bjy + cj = 0 as shown in Figure 4, where j ∈ N
identifies the jth ditch. We formulate the corresponding ditch-
crossing constraint as:

dj
2
−

∣∣∣ajpi
k,f,x + bjp

i
k,f,y + cj

∣∣∣√
a2j + b2j

≤ 0 , (11)

where dj is the width of the ditch. We note that we can apply
and extend (11) to enable CLM over more general terrain
classes. For instance, we can represent passable convex areas
as intersections of enough half-spaces, each expressed through
an affine constraint a⊤pi

k,f +b ≤ 0 for some a,b ∈ R3. Such
a strategy would allow us to model stepping stones, aerial
walkways, and staircases [20] and showcases the benefits of
treating stepping locations as optimization variables.

Once again, we stack the inequality constraints (8), (9), (10),
(11) for all k, i > 0, and f in (1e), and we feed them to our
optimal control problem (1).

C. Cost Function

We define the running state cost of the ith rigid body as:

lik,x(x
i
k,u

i
k) :=∥pi

k − pi∗
k ∥2Wp

+ (12a)

wq min
{
∥qi

k − qi∗
k ∥2, ∥qi

k + qi∗
k ∥2

}
+
(12b)

∥ṗi
k − ṗi∗

k ∥2Wṗ
+ (12c)

∥Ωi
k −Ωi∗

k ∥2WΩ
, (12d)

where the superscript ∗ denotes reference states, wq ∈ R>0,
Wp,Wṗ,WΩ ∈ R3×3 are diagonal, positive definite ma-
trices, and ∥ · ∥W computes the weighted norm of a vector
with weight matrix W. The orientation cost term (12b) gives
values in the range [0, wq

√
2] and represents a metric on 3D

rotations—i.e., it is equal to 0 if and only if qi
k and qi∗

k

represent the same orientation in SO(3) [21].
For each robot, we also regularize ground reaction forces,

manipulation wrenches, and stepping locations:

lik,u(x
i
k,u

i
k) :=

∑
f

(
∥f ik,f∥2Wf

+ ∥rik,f − ri∗k,f∥2Wr

)
+

(13a)

∥f ik,h∥2Wf
+ ∥τ i

k,h∥2Wτ
, (13b)

where we set the reference footholds ri∗k,f by projecting the
reference hip joint positions—which, in turn, depend on pi∗

k

and qi∗
k —onto the ground.

Finally, we combine the above terms in (1a) by defining

lk := w0l0k,x +
∑
i>0

(
lik,x + lik,u

)
,

lN := wN

(
w0l0k,x +

∑
i>0

lik,x

)
,

where w0 ∈ R>0 gives higher priority to payload tracking
objectives, wN ∈ R>0 is a final cost weight, and we omit the
function arguments for the sake of readability.

Reference Trajectories: We employ an object-centric strat-
egy to model the cost function of our TO. In particular, we
compute reference trajectories for the payload by integrating
planar velocity commands input by a user after having rotated
them according to the local ground orientation [20]. We
subsequently determine references for each robot based on
the payload targets: this approach makes the trajectories of



the robots secondary to the manipulation goals and reduces
the user’s responsibilities to direct CLM.

Since each robot’s hand is rigidly attached to the payload,
we can compute their reference pose as a function of x0∗

k : let
the target position and orientation of the ith robotic hand be
pi∗
k,h and qi∗

k,h, respectively. As per Assumption 2, we also
define the default position and orientation of the hand relative
to the robot’s frame Bi as r̂ih and q̂i

h. For simplicity, we
always define q̂i

h = 1, the identity quaternion, although our
formulation is trivially generalizable.

Given the above information, for each robot i > 0, we write
its reference orientation as qi∗

k = qi∗
k,h, and

pi∗
k = pi∗

k,h − qi∗
k ∗ r̂ih , (14a)

ṗi∗
k = ṗ0∗

k + q0∗
k ∗

[
Ω0∗

k × (pi∗
k − p0∗

k )
]
, (14b)

Ωi∗
k =

(
qi∗
k

)−1 ∗
(
q0∗
k ∗Ω

0∗
k

)
. (14c)

Equation (14) treats the entire multi-agent system as a single
rigid body where all robots are fixed to the payload at a
default relative configuration. Then, it calculates the targets
for each robot based on the object reference pose and velocity.
Although this approach easily leads to impossible trajectories,
it directly encourages the satisfaction of Assumption 2 while
burdening the TO problem (1) with finding dynamically fea-
sible optimal solutions.

IV. RESULTS

In this section, we present details about our numerical solver
and illustrate the capabilities of the proposed CLM approach
in simulation. Notably, we release the source code of our
solver as part of the project Ungar [37], on which we base
our implementation.

A. Implementation Details

We solve the CLM optimal control problem (1) using a
custom SQP solver based on the recent work by Grandia et al.
[20]. We refer the reader to [20] for an in-depth description
of the algorithm and hyperparameters, while we only mention
the differences here. More specifically, we adopt a different
penalty function to enforce the inequality constraints (1e), we
do not project the linearized general equality constraints (1d),
and we employ a different back-end quadratic programming
(QP) solver. Instead of a relaxed barrier function, we penal-
ize inequality constraint violations through a C2-continuous
function that works well in practice [22], namely:

S(h) :=


K
(
h2 + ϵ2

3

)
h ≥ ϵ

K
(
− 1

6ϵh
3 + 1

2h
2 − ϵ

2h+ ϵ2

6

)
−ϵ ≤ h < ϵ

0 h < −ϵ
(15)

for some constants K, ϵ ∈ R>0. Also, we do not perform
a projection of the general equality constraints because the
contact consistency equation (7) spans two consecutive time
steps, thus preventing a block diagonal constraint Jacobian and
impeding such a projection. For the same reason, we adopt
the general sparsity-exploiting OSQP solver [35] to solve the

TABLE I
PARAMETER VALUES

m0 16 kg WΩ diag(1, 1, 1)
I0 diag(1.6, 24, 1.6) kg ·m2 Wr diag(10, 10, 10)
mi, i > 0 25.2 kg Wf 10−8 diag(1, 1, 1)
Ii, i > 0 diag(0.4, 1, 1) kg ·m2 Wτ 10−8 diag(1, 1, 1)
lif , i > 0 0.4m w0 10

lih, i > 0 0.4m wN 10
µ 0.8 H 1.6m
Wp diag(10, 10, 42) κ 0.8
wq 36 K 42
Wṗ diag(1, 1, 1) ϵ 10−4

linearizations of (1), which imposes no requirements on the
structure of the constraint matrix.

We adopt a real-time iteration scheme [14] to take advantage
of the close OCP instances typical of MPC applications. To
this end, we use the solution computed at the previous iteration
shifted by one time step as a warm start. When feeding the
current state to (1b), we choose the sign of the measured orien-
tation qm so that it is closer to the corresponding warm-started
initial state q0; that is, we make the following reassignment:

qm ← argmin
q∈{qm,−qm}

∥q0 − q∥ .

Without this change, even if q0 represented the same orien-
tation of qm, the sign ambiguity of unit quaternions would
spoil the initialization, and the forward propagation through
(4b) would lead to catastrophic optimization results. In this
regard, we remark that the orientation cost terms (12b) are,
by construction, indifferent to the signs of the reference
quaternions.

We generate all the required derivatives using the open-
source C++ library CppADCodeGen [26]. Though entirely
serial, our implementation is able to run stably at 30Hz while
optimizing CLM trajectories with 2 robots over a 0.5 s time
horizon on a laptop computer with an i7-11800H, 2.30GHz,
16-core CPU. The frequency drops to ∼25Hz and ∼18Hz for
time horizons of ∼0.66 s and ∼1.03 s, respectively. However,
due to the nature of multiple shooting methods, most parts of
our MPC are amenable to parallelization [13], and with ag-
gressive code optimizations we expect to make our centralized
approach scale to up to 3 robots and 1 s horizon at fast enough
rates for robust control2.

B. Simulation Experiments

We test our CLM formulation in simulations with 2 robots
carrying a payload on challenging terrains using a trot gait.
In all our experiments, we adopt a time horizon of N = 15
discrete time steps of duration ∆t ≈ 0.033 s; we list the re-
maining parameter values of each setup in Table I. In the scope

2Grandia et al. [20] achieve the impressive control frequency of 100Hz
with OCPs of around 5000 decision variables, while a CLM with 3 robots,
∆t ≈ 0.033 s and a 1 s horizon would consist of “only” 4260. In the
literature, rates of 25Hz are often proven sufficient to achieve reliable MPC
performance on quadruped robots [4, 19].
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Fig. 5. Manipulation forces and body positions in a two-robot CLM after an
unexpected disturbance. At t = 3.2 s, we push one of the robots (orange) with
a 164N force fd acting on the center of mass along the y-direction for 0.8 s.
In the top two diagrams, we plot the x- and y-components of the manipulation
forces acting on the payload, respectively; at the bottom, we represent the y-
coordinate of all rigid bodies’ positions. As shown in the accompanying video
and in the force plots, both robots pull the object to maintain their balance.
From the final diagram, we can see that the unperturbed robot (blue) makes
a step in the y-direction toward the payload to reduce the moment arm of the
hand about its center of mass. Most importantly, the robots successfully keep
the payload (green) in place throughout the experiment.

of this paper, we use two Laikago robots [2] augmented with a
four-degree-of-freedom virtual mechanical arm modeled after
the DynaArm [34]. However, in the accompanying video, we
also show the versatility of our controller with three- and
four-robot demonstrations involving heterogeneous agents—
i.e., Laikago, A1, Aliengo [2]—and different gait patterns—
i.e., trot, crawl, pronk.

Finally, to assess the quality of the trajectories discovered
by our CLM planner, we employ non-physical environments
where the optimal state plans are tracked by IK instead of
WBC (cf. Figure 2). To this end, we convert discrete time
quantities to continuous time using a simple linear interpo-
lation strategy, and we generate foot trajectories given their
stepping locations and timings as cubic splines.

Disturbance Rejection: CLM systems depend on the co-
ordination of different agents. If one of the robots faces an
unexpected perturbation, the controller must react and replan
all agents’ trajectories accordingly. We test our MPC by
pushing one of the two robots while commanding them to
keep the payload in place. Specifically, we apply a sizable
164N force in the y-direction for 0.8 s.

To evaluate the emergence of cooperative behaviors, we
plot the manipulation forces and positions of each robot in

Figure 5. When the push begins, both agents start pulling
the object along its longitudinal dimension, thus helping the
attacked robot to regain balance. We also observe that the
undisturbed robot steps toward the payload in response to
the perturbation. This move reduces the moment arm and,
consequently, the torque induced on the base by the manipu-
lation force, which would have been much higher otherwise
due to the push. In this context, collaboration and foothold
optimization play a fundamental role in preventing the fall of
either robot.

Ditches: We evaluate the ditch crossing constraint (11) by
randomly generating 12 ditches aligned with the y-axis with a
maximum width dj of 32 cm. This allows us to simplify (11)
as:

dj
2
−
∣∣pi

k,f,x − xj

∣∣ ≤ 0 , (16)

where xj is the x-coordinate of any point along the jth ditch
center line. Then, we let the robots carry an object using a
variety of gait patterns while avoiding the gaps on the ground.
In this experiment, (11) constrains all robots’ feet at all time
steps, which translates to 2880 inequalities.

Handling inequality constraints through penalty functions
requires careful consideration of how the constraints are
formulated—see Appendix A. The proposed CLM consistently
converges to a feasible solution with minimal tuning of the
foot tracking weights Wr in (13) and the penalty function
parameters in (15). We include a snapshot of the experiment
in Figure 1; notably, the optimization can make considerable
corrections to the regularizing footholds ri∗k,f . This demon-
stration shows how the ability to adjust stepping locations
can be crucial if the ground is not trivially flat. Not only
is this skill necessary to deal with rough terrains, but the
slight displacement of a planned foothold can also result in
much higher torques on a robot’s base to promptly counteract
unexpected pushes and perturbations. These aspects become
especially relevant in CLM, where the high dimensionality of
the system implies more numerous potential sources of error.

Ramps: By endowing our TO with foothold optimization,
we enable CLM to work on virtually any terrain. Indeed, as
delineated in Section III-B, we can make our MPC controller
aware of the terrain as long as a parameterization or a local
approximation thereof is available. We verify the efficacy of
our approach by demonstrating CLM on a smooth ramp, as
shown in Figure 1. To this end, we model zg(·) with a logistic
function:

zg(p
i
k,f,x) :=

H

1 + exp
[
− 4

H κ(pi
k,f,x − xg)

] , (17)

where H ∈ R>0 is the height of the ramp, xg ∈ R is the
position along the x-axis of the ramp center, and κ ∈ R is
the slope value at xg—see Figure 6. The functions ng(·),
txzg (·) and tyzg (·) required by the positive ground reaction
force normal and linearized friction constraints (9) and (10),
respectively, can be derived from (17) and we omit them for
brevity.



Fig. 6. Geometric representation of a ramp. We employ a logistic function
due to its smooth profile and convenient parameterization: H is the maximum
height of the ramp, xg is its location, and κ is its slope at xg .

Fig. 7. CLM on the edge of a ramp. When the lowermost robot approaches
the peak of the ramp, our method to generate target motions clashes with
its leg kinematic limits, and the robot must navigate at the boundary of the
corresponding constraint. The reference state xi∗ (green) lies above the actual
state of the robot xi (violet) since the hind legs (red) have reached their
maximal extension lif .

As described in Section III-C, we project planar velocity
commands for the payload onto planes locally tangent to the
terrain geometry. In our trials, the CLM system is able to track
such targets reliably with slope values up to ∼ 38.7◦ while
switching between different gaits. However, near the upper
edge of the ramp, the generated reference trajectories for the
robots start colliding with the kinematic limits of the legs—
see Figure 7. This fact requires precise tuning of the stiffness
K of the penalty function (15), so that it successfully meets
the constraint (8) without hindering convergence.

C. Limitations

Our OCP is limited by the absence of constraints on robot
self-collisions and manipulation forces. While our choice of
tracking objectives mitigates both issues, we must carefully
address them before migrating our controller to real-world ma-
chines. Thus, we will integrate contact wrench cones (CWCs)
[16] as an immediate next step, along with a self-collision
avoidance formulation adapted to our SRBD.

We further plan to improve how we generate target trajecto-
ries for the robots. Although our approach to computing robot
references proves effective in most scenarios, the “edge cases”
encountered in our ramp experiment advocate the necessity for
more complex strategies. To this end, investigating extensions
of Raibert’s heuristics [5, 20] to irregular and non-flat terrains
in cooperative settings would be a valuable research avenue.

The need for real-time motion planning capabilities can be
tackled along two threads: on an implementation level, through
parallel computing solutions, more efficient QP solvers, or
decentralized control schemes; on a modeling level, by em-
ploying simpler input parameterizations [22], or different
MPC paradigms for high-dimensional systems—e.g., model
hierarchy predictive control (MHPC) [27].

For future work, we will couple the resulting MPC with
whole-body controllers and deploy it in a proof-of-concept
hardware demonstration. This will involve resolving early/late
touchdown events [20] and adopting a robust control strat-
egy for object grasping. After successfully integrating these
capabilities, we intend to use teams of ANYmal C platforms
equipped with DynaArm manipulators [34] for assisting the
onsite fabrication of timber assemblies.

V. CONCLUSION

In this paper, we presented a principled approach for
controlling multiple one-armed quadruped robots toward col-
laborative loco-manipulation tasks. Our centralized MPC for-
mulation extends the widespread SRBD models developed
in the legged robotics literature to interacting, multi-agent
systems. By expressing orientations through unit quaternions,
we benefit from a compact, singularity-free representation,
which can accommodate arbitrary payload trajectories. A Lie
group time-stepping method allows us to integrate angular
velocities seamlessly while preserving unit norm constraints.
Moreover, by including foothold positions in the decision vari-
ables, we can apply our approach to non-flat and unstructured
terrains, enabling more challenging collaborative tasks than
those previously achieved in CLM research. While our serial
implementation achieved real-time rates for robot duos over
0.5 s time horizons, our multiple-shooting strategy is well
suited to performance boosts through parallelizations, which
will render our framework ripe for hardware realizations.

APPENDIX A
IMPACT OF INEQUALITY CONSTRAINT FORMULATIONS

The effectiveness of our penalty function-based approach
is naturally influenced by the formulation of inequality con-
straints. For instance, with regard to the ditch crossing exper-
iment of Section IV-B, we can write the squared form of (16)
as:

d2j
4
−
(
pi
k,f,x − xj

)2 ≤ 0 . (18)

Although (18) is mathematically equivalent to (16), the al-
ternative formulation is more prone to producing unfeasible
solutions and requires painstaking hyperparameter tuning to
achieve satisfactory performance. This fact is due to the



tendency of (18) to yield less steep search directions orthog-
onal to the constraint surfaces when pi

k,f,x approaches xj .
Nevertheless, the absolute value function in (16) proves highly
effective in averting the above shortcomings and guaranteeing
feasible solutions.
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Jenelten, Marko Bjelonic, and Marco Hutter. Alma - articulated
locomotion and manipulation for a torque-controllable robot. 2019
International Conference on Robotics and Automation (ICRA), pages
8477–8483, 2019.

[4] G. Bledt and Sangbae Kim. Implementing regularized predictive
control for simultaneous real-time footstep and ground reaction force
optimization. 2019 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 6316–6323, 2019.

[5] G. Bledt, P. Wensing, and Sangbae Kim. Policy-regularized model
predictive control to stabilize diverse quadrupedal gaits for the mit
cheetah. 2017 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 4102–4109, 2017.

[6] G. Bledt, M. J. Powell, B. Katz, Jared Di Carlo, Patrick M. Wensing, and
Sangbae Kim. Mit cheetah 3: Design and control of a robust, dynamic
quadruped robot. 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 2245–2252, 2018.

[7] Gerardo Bledt, Matthew J Powell, Benjamin Katz, Jared Di Carlo,
Patrick M Wensing, and Sangbae Kim. Mit cheetah 3: Design and
control of a robust, dynamic quadruped robot. In 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
pages 2245–2252. IEEE, 2018.

[8] Fabrizio Caccavale, Gerardo Giglio, Giuseppe Muscio, and Francesco
Pierri. Cooperative impedance control for multiple uavs with a robotic
arm. 2015 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 2366–2371, 2015.

[9] Matthew Chignoli and Patrick M. Wensing. Variational-based optimal
control of underactuated balancing for dynamic quadrupeds. IEEE
Access, 8:49785–49797, 2020.

[10] Jiawei Chiu, Jean-Pierre Sleiman, Mayank Mittal, Farbod Farshidian,
and Marco Hutter. A collision-free mpc for whole-body dynamic loco-
motion and manipulation. 2022 International Conference on Robotics
and Automation (ICRA), pages 4686–4693, 2022.

[11] Preston Culbertson, Jean-Jacques E. Slotine, and Mac Schwager. Decen-
tralized adaptive control for collaborative manipulation of rigid bodies.
IEEE Transactions on Robotics, 37:1906–1920, 2020.

[12] Hongkai Dai, Andres Valenzuela, and Russ Tedrake. Whole-body
motion planning with centroidal dynamics and full kinematics. 2014
IEEE-RAS International Conference on Humanoid Robots, pages 295–
302, 2014.

[13] M. Diehl, H. Bock, H. Diedam, and Pierre-Brice Wieber. Fast direct
multiple shooting algorithms for optimal robot control. 2005.
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