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Collaborative Locomotion of Quadrupedal Robots: From Central-
ized Predictive Control to Distributed Control

Jeeseop Kim

(ABSTRACT)

This dissertation aims to realize the goal of deploying legged robots that cooperatively walk
to transport objects in complex environments. More than half of the Earth’s continent
is unreachable to wheeled vehicles—this motivates the deployment of collaborative legged
robots to enable the accessibility of these environments and thus bring robots into the real
world. Although significant theoretical and technological advances have allowed the develop-
ment of distributed controllers for complex robot systems, existing approaches are tailored
to the modeling and control of multi-agent systems composed of collaborative robotic arms,
multi-fingered robot hands, aerial vehicles, and ground vehicles, but not collaborative legged
agents. Legged robots are inherently unstable, unlike most of the systems where these al-
gorithms have been deployed. Models of cooperative legged robots are further described by
high-dimensional, underactuated, and complex hybrid dynamical systems, which complicate
the design of control algorithms for coordination and motion control. There is a fundamental
gap in knowledge of control algorithms for safe motion control of these inherently unstable
hybrid dynamical systems, especially in the context of collaborative work. The overarching
goal of this dissertation is to create a formal foundation based on scalable optimization and
robust and nonlinear control to develop distributed and hierarchical feedback control algo-
rithms for cooperative legged robots to transport objects in complex environments.

We first develop a hierarchical nonlinear control algorithm, based on model predictive con-
trol (MPC), quadratic programming (QP), and virtual constraints, to generate and stabilize
locomotion patterns in a real-time manner for dynamical models of single-agent quadrupedal
robots. The higher level of the proposed control scheme is developed based on an event-based
MPC that computes the optimal center of mass (COM) trajectories for a reduced-order lin-
ear inverted pendulum (LIP) model subject to the feasibility of the net ground reaction
force (GRF). QP-based virtual constraint controllers are developed at the lower level of the
proposed control scheme to impose the full-order dynamics to track the optimal trajectories
while having all individual GRFs in the friction cone. The analytical results are numeri-
cally verified to demonstrate stable and robust locomotion of a 22 degree of freedom (DOF)
quadrupedal robot, in the presence of payloads, external disturbances, and ground height
variations.

We then present a hierarchical nonlinear control algorithm for the real-time planning and
control of cooperative locomotion of legged robots that collaboratively carry objects. An
innovative network of reduced-order models subject to holonomic constraints, referred to as



interconnected LIP dynamics, is presented to study quasi-statically stable cooperative loco-
motion. The higher level of the proposed algorithm employs a supervisory controller, based
on event-based MPC, to effectively compute the optimal reduced-order trajectories for the
interconnected LIP dynamics. The lower level of the proposed algorithm employs distributed
nonlinear controllers to reduce the gap between reduced- and full-order complex models of
cooperative locomotion. We numerically investigate the effectiveness of the proposed control
algorithm via full-order simulations of a team of collaborative quadrupedal robots, each with
a total of 22 DOFs. The dissertation also investigates the robustness of the proposed control
algorithm against uncertainties in the payload mass and changes in the ground height profile.

Finally, we present a layered control approach for real-time trajectory planning and control
of dynamically stable cooperative locomotion by two holonomically constrained quadrupedal
robots. An innovative and interconnected network of reduced-order models, based on the
single rigid body (SRB) dynamics, is developed for trajectory planning purposes. At the
higher level of the control scheme, two different MPC algorithms are proposed to address the
optimal control problem of the interconnected SRB dynamics: centralized and distributed
MPCs. The MPCs compute the reduced-order states, GRFs, and interaction wrenches be-
tween the agents. The distributed MPC assumes two local QPs that share their optimal
solutions according to a one-step communication delay and an agreement protocol. At the
lower level of the control scheme, distributed nonlinear controllers are employed to impose
the full-order dynamics to track the prescribed and optimal reduced-order trajectories and
GRFs. The effectiveness of the proposed layered control approach is verified with extensive
numerical simulations and experiments for the blind, robust, and cooperative locomotion of
two holonomically constrained A1 robots with different payloads on different terrains and
in the presence of external disturbances. It is shown that the distributed MPC has a per-
formance similar to that of the centralized MPC, while the computation time is reduced
significantly.



Collaborative Locomotion of Quadrupedal Robots: From Central-
ized Predictive Control to Distributed Control

Jeeseop Kim

(GENERAL AUDIENCE ABSTRACT)

Future cities will include a complex and interconnected network of collaborative robots that
cooperatively work with each other and people to support human societies. Human-centered
communities, including factories, offices, and homes, are developed for humans who are
bipedal walkers capable of stepping over gaps, walking up/down stairs, and climbing lad-
ders. One of the most challenging problems in deploying the next generation of collaborative
robots is maneuvering in those complex environments. Although significant theoretical and
technological advances have allowed the development of distributed controllers for motion
control of multi-agent robotic systems, existing approaches do not address the collaborative
locomotion problem of legged robots. Legged robots are inherently unstable with nonlinear
and hybrid natures, unlike most systems where these algorithms have been deployed. Fur-
thermore, the evolution of legged collaborative robot teams that cooperatively manipulate
objects can be represented by high-dimensional and complex dynamical systems, complicat-
ing the design of control algorithms for coordination and motion control.

This dissertation aims to establish a formal foundation based on nonlinear control and op-
timization theory to develop hierarchical feedback control algorithms for effective motion
control of legged robots. The proposed layered control algorithms are developed based on
interconnected reduced-order models. At the high level, we formulate cooperative locomotion
as an optimal control problem of the reduced-order models to generate optimal trajectories.
To realize the generated optimal trajectories, nonlinear controllers at the low level of the
hierarchy impose the full-order models to track the trajectories while sustaining stability.
The effectiveness of the proposed layered control approach is verified with extensive numer-
ical simulations and experiments for the blind and stable cooperative locomotion of legged
robots with different payloads on different terrains and subject to external disturbances. The
proposed architecture’s robustness is shown under various indoor and outdoor conditions,
including landscapes with randomly placed wood blocks, slippery surfaces, gravel, grass, and
mulch.
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Chapter 1

Introduction

Future cities will include a complex and interconnected network of collaborative robots (co-
robots) that cooperatively work with each other and people to support human societies.
Human-centered communities, including factories, offices, and homes, are developed for hu-
mans who are bipedal walkers capable of stepping over gaps, walking up/down stairs, and
climbing ladders. One of the most challenging problems in deploying the next generation
of co-robots is mobility in complex environments. More than half of the Earth’s landmass
is inaccessible to wheeled vehicles —this motivates the deployment of legged co-robots to
access these environments and thus bring robots into the real world. Legged robots that
are augmented with manipulators can form co-robot teams that assist humans in different
aspects of their life such as labor-intensive tasks, construction, manufacturing, assembly,
and disaster response (see Fig. 1.1). In recent years, there have been important advances
in the construction of legged robots (see Fig. 1.2). While Boston Dynamics’ Spot and ETH
Zurich’s ANYmal make use of robotic arms to demonstrate an outstanding level of locomo-
tion and manipulation, existing techniques are tailored to the motion planning and control
of one legged agent, but not collaborative teams of legged robots. Although important the-
oretical and technological advances have allowed the development of distributed controllers
for motion control of complex robot systems, state-of-the-art approaches address the control
of multiagent systems composed of collaborative robotic arms, multifingered robot hands,
aerial vehicles, and ground vehicles, but not cooperative legged agents. Legged robots are
inherently unstable, unlike most of the systems where these algorithms have been deployed.
Furthermore, the evolution of legged co-robot teams that cooperatively manipulate objects
can be represented by high-dimensional and complex hybrid dynamical systems which com-

Figure 1.1: (a) Vision 60 robot. (b) Illustration of the system under investigation in this thesis.
Commercially available Kinova arms are affixed on existing Vision 60s to form the legged co-robot
team. (c) and (d) Examples of legged co-robot teams that cooperatively work with each other and
people for construction, manufacturing, and assembly.

1
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Figure 1.2: Examples of state-of-the-art quadrupedal robots: (a) Vision60 (Ghost Robotics) [167]
augmented with Kinova arm, (b) collaborative Vision60s (c) Spot (Boston Dynamics) with a robotic
arm [64], (d) ANYmal (ANYbotics) [22] with a Kinova arm, (e) ANYmal-C (ANYbotics) [22], (f)
MIT mini cheetah [40], and (g) A1 (Unitree Robotics) [194].

plicate the design of distributed control algorithms for coordination and motion control. In
particular, there is a fundamental gap in knowledge of distributed control algorithms for
motion control of these inherently unstable, underactuated, and complex hybrid dynamical
systems.

1.1 Motivation, Related Work, and Challenges

The necessity of scalable and distributed control algorithms for collaborative lo-
comotion: Existing control approaches for legged robots are tailored to the path planning
and stabilization of dynamic gaits for single agent legged machines, but not complex hybrid
dynamical models that describe the evolution of multiagent legged robotic systems. This
is mainly due to the fact that state-of-the-art techniques for dynamic locomotion are cen-
tralized approaches that cannot be easily transferred to legged co-robot teams. Centralized
controllers interpret data from all joints of the robot and then relays decisions back to all
actuators. A legged co-robot team that manipulates an object can be modeled as a set of
legged robots which are coupled to each other and the object by a set of holonomic con-
straints. The significant challenge is to construct controllers for such a complex robotic
system that control locomotion and manipulation with many Degrees of Freedom (DOFs)
and large amounts of sensory data. Computing the control torques for such a composite
system in 1kHz is often impossible—this underlines the importance of developing scalable
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distributed and decentralized controllers.

In decentralized schemes, the control problem defines lower-dimensional subsystems (e.g.,
each co-robot) that use only sensory feedback local to each subsystem. Each subsystem
has its own controller to make its own decisions based on its own measurements. The ab-
sence of communication between controllers in decentralized strategies, however, may limit
the achievable performance. This issue can be fixed through designing distributed con-
trol schemes in which decentralized controllers can communicate as well. Furthermore, a
substantial body of research in biological motor control [60, 143, 181] suggests that the
human/animal movement and locomotion control can be achieved through distributed and
hierarchical schemes. Although important theoretical and technological advances have al-
lowed the development of distributed controllers for motion control of multi robot sys-
tem (MRS) (e.g., [33, 133, 138, 191, 209]), existing approaches are tailored to the control
of multiagent systems composed of collaborative robotic arms [142], multifingered robot
hands [143], aerial vehicles [69, 136, 139, 148, 173, 174, 184, 192, 193], and ground vehicles
[33, 50, 136, 138, 148, 149, 191, 209], but not cooperative legged agents.

The necessity of innovative optimal control algorithms for real-time planning of
collaborative locomotion: Gait planning for complex dynamical models of collaborative
locomotion is a significant challenge arising from the hybrid nature of models, nonlin-
earities, high dimensionality, and strong interactions amongst the agents. Hybrid systems
theory has provided powerful techniques for modeling and analyzing dynamic locomotion of
single legged machines [4, 6, 7, 8, 9, 10, 16, 17, 19, 21, 24, 34, 35, 36, 37, 42, 43, 46, 52,
53, 84, 89, 91, 92, 98, 99, 104, 107, 117, 130, 141, 152, 153, 158, 159, 161, 163, 168, 169,
170, 172, 177, 179, 180, 182, 183, 188, 196, 203, 206, 212]. Models of legged locomotion are
hybrid with continuous-time domains representing the Lagrangian dynamics and discrete-
time transitions representing the change of contact points with the environment. Advanced
nonlinear control algorithms have been developed to address the hybrid nature of locomotion
such as hybrid reduction [18, 20, 21, 87], controlled symmetries [179], transverse linearization
[130, 176], and hybrid zero dynamics (HZD) [19, 205]. The HZD approach considers a set
of kinematic constraints, referred to as virtual constraints, to coordinate the links of the
robots during locomotion. Virtual constraints are asymptotically imposed by the action of
a feedback control law (e.g., input-output (I-O) linearization [106]) and have been validated
for stable locomotion of bipedal robots [19, 43, 103, 132, 166, 183] and powered prosthetic
legs [88, 214]. The full-order gait planning in the HZD approach is typically formulated as a
nonlinear programming (NLP) problem. Reference [103] developed a scalable gait planning
approach based on HZD and direct collocation [39, 102, 113, 153, 157] that can be effectively
solved with existing NLP tools. Although the direct-collocation-based HZD approach gen-
erates optimal trajectories for full-order models of legged robots in a fast manner, it cannot
address real-time trajectory optimization for collaborative locomotion.

Collaborative manipulation of objects by legged robot teams is a significant challenge,
mainly due to the uncertainty and multi-faceted nature of interaction problems, which can
affect the stability of each agent and whole interconnected system. Interaction models typi-
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cally deal with intent detection, arbitration, and feedback [123] but make broad assumptions
about the operating environments. One approach to address uncertainties arising from col-
laborative manipulation/locomotion, interaction with objects, payloads, terrain structures,
and environmental conditions can be through the development of robust optimal control al-
gorithms. Robustness of control systems to uncertainties and disturbances has always been a
central issue in feedback control. Developing multi-variable robust control methods has been
the focal point of the control community in the last decades. The H2/H∞ robust control
theory is the result of this effort, e.g., [23, 26, 31, 32, 45, 61, 62, 79, 81, 82, 195, 215, 216].
State-of-the-art H2/H∞ controllers are tailored to the stabilization of equilibrium points for
ordinary differential equations (ODEs) and not hybrid trajectories for sophisticated dynam-
ical systems arising from legged agents. This underlines the importance of the development
of Model Predictive Control (MPC) and robust optimal control approaches that allow real-
time planning and dynamic coordination of autonomous quadrupedal robots to effectively
and safely interact with other agents in the presence of uncertainties and disturbances.

A variety of powerful MPC-based approaches have been introduced for the real-time planning
and robust control of solitary legged machines including the Linear Inverted Pendulum (LIP)-
based approach [14, 66, 94, 109, 162, 208], single rigid body (SRB) dynamics approach
[56, 57, 198], nonlinear MPC [145], policy-regularized MPC [27], and Quadratic Programming
(QP)-based whole-body control [70, 118]. Quadrupedal robots that cooperatively transport
an object can be described by a set of legged robots that are coupled to each other and
the object via a set of holonomic constraints. The challenge is to develop real-time optimal
control algorithms for such a complex and inherently unstable robotic system that controls
locomotion with many DOFs. Existing MPC approaches for legged robots are typically
formulated as QPs to be solved every time sample—this makes the extension of these MPC-
based techniques for composite mechanical systems arising from collaborative locomotion of
quadrupedal robots computationally intensive. We aim to deploy innovative MPC techniques
in the context of networked systems that can reduce the computational burden to allow real-
time planning and coordination of sophisticated co-robot teams. One approach to tackle this
challenge is through the development of event-based MPC techniques [121], in which MPC
problems are solved at particular time samples, referred to as events (e.g., beginning of each
gait), rather than every time sample.

1.2 Scope, Goals, and Specific Objectives

The evolution of legged robotic teams that cooperatively manipulate objects can be repre-
sented by high-dimensional and highly-coupled hybrid dynamical systems that complicate the
design of coordination and control algorithms. Section 1.1 emphasized that existing control
architectures for legged robots are not suitable for collaborative locomotion due to the lack
of scalability and efficiency. Existing literature on MRS is also primarily tailored to weakly
coupled unmanned ground vehicles (UGV) and unmanned aerial vehicles (UAV), and hence,



1.2. SCOPE, GOALS, AND SPECIFIC OBJECTIVES 5

they are outside the scope of collaborative legged locomotion. The overarching goal of this
thesis is to establish a formal foundation based on nonlinear systems and optimization theory
to develop scalable and hierarchical feedback control algorithms for effective motion control of
interconnected cooperative legged robots. The thesis aims to establish an innovative control
paradigm, based on MPC and nonlinear control, in the context of interconnected systems
that allow supervisory and distributed control of collaborative legged machines.

The specific objectives and key innovations of the dissertation include:

(1) Creation of nonlinear feedback control algorithms for full-order dynamical models of
single-agent legged robots based on virtual constraints and event-based MPC to reduce
the computational burden for path planning and motion control;

(2) Creation of hierarchical control algorithms, based on supervisory and event-based
MPC, for collaborative locomotion of multi-agent legged robots;

(3) Creation of layered control algorithms, based on centralized and distributed MPC, for
planning and motion control of dynamic cooperative locomotion of multi-agent legged
robots; and

(4) Transferring the theoretical contributions and layered control algorithms into numerical
simulations and practice through experiments on a team of quadrupedal robots.

These objectives will be achieved through the following research aims.

Figure 1.3: Event-based MPC and QP-based low-level controller for single-agent legged robots.

1.2.1 Event-based MPC and QP-based low-level nonlinear con-
trollers for single-agent legged robots

In this research aim, we develop a hierarchical nonlinear control algorithm, based on MPC,
QP, and virtual constraints, to generate and stabilize locomotion patterns in a real-time
manner for dynamical models of single-agent quadrupedal robots (see Fig. 1.3). The higher
level of the proposed control scheme is developed based on an event-based MPC that com-
putes the optimal center of mass (COM) trajectories for a reduced-order LIP model subject
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to the feasibility of the net ground reaction force (GRF). It is shown that the event-based
nature of the proposed MPC approach can significantly reduce the computational burden
associated with the real-time implementation of MPC techniques. To bridge the gap between
reduced- and full-order models, QP-based virtual constraint controllers are developed at the
lower level of the proposed control scheme to impose the full-order dynamics to track the
optimal trajectories while having all individual GRFs in the friction cone. The analytical
results are numerically verified to demonstrate stable and robust locomotion of a 22 DOF
quadrupedal robot, in the presence of payloads, external disturbances, and ground height
variations.

Figure 1.4: Hierarchical control algorithm with supervisory MPC for collaborative locomotion of
legged-robot teams.

1.2.2 Hierarchical control algorithms with supervisory MPC for
multi-agent legged robots

In this research aim, we develop a hierarchical nonlinear control algorithm for the real-
time planning and control of cooperative locomotion of legged robots that collaboratively
carry objects (see Fig. 1.4). An innovative network of reduced-order models subject to
holonomic constraints, referred to as interconnected LIP dynamics, is presented to study
cooperative locomotion. The higher-level of the proposed algorithm employs a supervisory
controller, based on event-based MPC introduced in Section 1.2.1, to effectively compute
the optimal reduced-order trajectories for the interconnected LIP dynamics. The lower-
level of the proposed algorithm employs distributed nonlinear controllers to reduce the gap
between reduced- and full-order complex models of cooperative locomotion. In particular,
the distributed controllers are developed based on QP and virtual constraints to impose



1.2. SCOPE, GOALS, AND SPECIFIC OBJECTIVES 7

the full-order dynamical models of each agent to asymptotically track the reduced-order
trajectories while having feasible contact forces at the leg ends. We numerically investigate
the power of the proposed control algorithm via full-order simulations of a team of two, three,
and four collaborative quadrupedal robots, each with a total of 22 DOFs. We also investigate
the robustness of the proposed control algorithm against uncertainties in the payload mass
and changes in the ground height profile.

Figure 1.5: Layered control algorithm with centralized and distributed MPC for cooperative loco-
motion.

1.2.3 Layered control algorithm with centralized and distributed
MPC based on interconnected SRB model for multi-agent
legged robots

The framework of Section 1.2.2 assumes that all agents instantaneously share their reduced-
order states at the beginning of continuous-time domains to formulate the optimal control
problem for the interconnected LIP dynamics. To address the dynamic cooperative locomo-
tion and inherent communication delays in practice, we develop a centralized MPC based on
interconnected SRB model, which can capture the interaction wrenches without losing the
dynamic richness. Furthermore, distributed network of MPC algorithms developed based on
centralized MPC allow communication delays while guaranteeing the stability of the inter-
connected reduced-order model (see Fig. 1.5). More specifically, we alter the hierarchical
control scheme of Section 1.2.2 by replacing the higher-level supervisory MPC with central-
ized and distributed MPC. The low-level nonlinear whole body motion controllers are also
re-developed for generating the whole-body motion on the A1 robot. We numerically and
experimentally investigate the effectiveness of the proposed layered control algorithm for
cooperative locomotion of a team of multi-agent legged robots subject to uncertainties and
disturbances in indoor and outdoor environments.
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1.2.4 Structure of the Dissertation

We address the above-mentioned specific objectives in three parts. Part I focuses on address-
ing the development of event-based MPC and QP-based low-level nonlinear controllers. Part
II addresses the development of a hierarchical control algorithm consisting of the supervisory
MPC and distributed low-level controllers. Part III presents the layered control architecture
with centralized and distributed MPCs as trajectory planner and QP-based low-level non-
linear controller. The detailed numerical and experimental validations are also discussed in
Part III.

1.3 Significance and Importance

This dissertation aims to address the largely unexplored field of distributed control of large-
scale and inherently unstable hybrid systems of legged co-robots. The innovative proposed
algorithms are theoretically significant as 1) they scalably plan and systematically synthesize
distributed feedback controllers for complex hybrid models of legged co-robot teams with
high DOFs; 2) they address strong interactions, underactuataion, and unilateral constraints
for cooperative locomotion; 3) they bridge the gap between reduced- and full-order models of
collaborative locomotion; and 4) they stabilize full-order models of locomotion as opposed to
the reduced-order abstractions of high-dimensional legged machines. The scalable theoret-
ical and computational foundation for planning and distributed control of legged co-robots
are technologically significant because they can be effectively solved with available software
packages, making our findings easily transferable to legged robots in our laboratory to bridge
the gap between theory and implementation.

1.4 Literature Review: Modeling, Planning, and Con-
trol of Legged Robots

This section provides a brief survey of the state-of-the-art approaches in modeling, trajec-
tory optimization, and feedback control of legged locomotion. To better understand the
dynamics of robotic systems, we commonly think about how to model robots. The dynam-
ical models can be either used for trajectory optimization or control. Each purpose has
different requirements on the models to improve the performance. For instance, trajectory
optimization for legged robots can adopt either a full-order model or a reduced-order model
based on the purpose. The trajectory from the full-order model addresses the motions of all
DOFs and can be readily transferred to the legged robot. However, trajectory optimization
algorithms based on full-order models are usually computationally intensive, and hence, they
cannot address motion planning in real-time for complex environments. On the other hand,
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Figure 1.6: Full-order modeling accounts for all links and DOFs in the model.

trajectory optimization algorithms based on reduced-order models can meet the real-time
requirement while adjusting the trajectory based on the upcoming environment. The chal-
lenge is in applying these reduced-order trajectories to the full-order models of legged robots
while bridging the gap between reduced- and full-order models.

1.4.1 Full-Order Lagrangian Models

A Full-order model is the most intuitive way to describe high DOF robots. The goal of
this approach is to obtain a model that accurately represents the entire robot, see, e.g.,
[3, 11, 77, 78, 101, 124, 205, 206]. This approach results in nonlinearities in the equations
of motion. Unfortunately, there is still a gap between the real robots and their full-order
models due to uncertainties arising from viscous damping, friction on gears and axes, joint
and frame elasticity, etc. We will consider these uncertainties negligible and proceed with
an approximation of the model. To obtain the full-order model of legged machines, we make
use of the Lagrangian, which is defined as follows:

L(q, q̇) := K(q, q̇)− U(q), (1.1)

where K(q, q̇) denotes the total kinetic energy of the system and U(q) represents the total
potential energy. Furthermore, q ∈ Rn+6 denotes the generalized coordinates of the robot.
Here, n represents the number of internal DOFs in the robot structure (i.e., body angles)
that form the robot’s shape. The equations of motion can then be described by the Euler-
Lagrange equations as follows:

D(q) q̈ + C(q, q̇) q̇ +G(q) = B u+ J⊤(q)λ, (1.2)

where D(q) ∈ R(n+6)×(n+6) is the symmetric and positive definite mass-inertia matrix,
C(q, q̇) q̇ + G(q) ∈ Rn+6 represents the Coriolis, centrifugal, and gravitational terms, B ∈
R(n+6)×m denotes the input distribution matrix, u ∈ Rm represents the control inputs (i.e.,
joint-level torques), J(q) denotes the contact Jacobian matrix, λ represents the GRFs, and
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Γ := B u + J⊤(q)λ denotes the sum of the generalized forces and torques acting on the
rigid body. The dimension of the Jacobian matrix J(q) depends on the number of contact
points with the environment. Here, we assume that the robot has point feet, and hence, the
interaction of the robot and environment is just through the GRFs. In this thesis, we will
make use of the full-order model (1.2) to develop the low-level controllers for quadrupedal
robots (see Chapters 2 and 3 for more details).

1.4.2 Full-Order Hybrid Dynamical Models

Hybrid systems exhibit characteristics of both continuous- and discrete-time systems [24, 85,
99, 212]. Models of legged locomotion are hybrid with continuous-time domains representing
the Lagrangian dynamics and discrete-time transitions representing the change of contact
points with the environment [4, 6, 7, 8, 9, 10, 16, 17, 19, 21, 34, 35, 36, 42, 43, 46, 47, 48,
52, 53, 89, 91, 92, 98, 104, 107, 130, 141, 152, 153, 158, 159, 168, 169, 170, 172, 177, 179,
180, 182, 183, 188, 203, 206]. Steady-state locomotion corresponds to periodic orbits of these
hybrid dynamical models. The trajectory optimization (i.e., gait planning) algorithms need
to address the hybrid nature of locomotion by combing both the continuous- and discrete-
time dynamics. In general, gait planning algorithms are expressed as NLP. Reference [103]
developed a scalable gait planning approach based on direct collocation [39, 102, 113, 153,
157] that can be effectively solved with existing NLP tools. Although the direct-collocation-
based approaches generate optimal trajectories for full-order models of legged robots in a
fast manner, they cannot address real-time trajectory optimization in complex environments.
These limitations could be critical for operating robots outside the laboratory setup. For this
reason, we cannot adopt the entire framework of the hybrid systems theory for collaborative
locomotion of multi-agent robots. However, we can still capitalize on some of the advantages
of the framework proposed in the nonlinear hybrid systems theory. The HZD approach
[6, 19, 205, 206], which is one of the well-known methods used for full-order models of legged
robots, can significantly help us to develop low-level controllers for collaborative locomotion.
This will be clarified more in Chapters 2 and 3.

1.4.3 Reduced-Order Models

Reduced-order models represent complex dynamical models of locomotion in a simplified
dynamical structure, see, e.g., [14, 56, 57, 94, 109, 147, 162, 197, 199]. In what follows, we
will discuss three reduced-order models that are commonly used in the literature.

SRB Dynamics: The SRB model considers the robot as a single mass with an inertia
(see Fig. 1.7). The key idea of this model is to reduce the complexity of the robot by
considering its torso dynamics subject to the GRFs while ignoring the leg limbs in the
abstraction [56, 57, 115, 198]. Most of the existing quadrupedal robots have concentrated
mass on the body with relatively small masses on their leg limbs. The SRB model presents
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Figure 1.7: SRB model.

Figure 1.8: LIP model.

a good approximation for dynamical models of these robots. However, this approach has
limitations when applied to quadrupedal robots or humanoids with heavy limbs.

LIP Models: The LIP model is one of the simplest models developed based on the inverted
pendulum structure with a point mass on top of a massless rod whose position coincides with
the robot’s COM [108]. This assumption works appropriately, especially when the dynamical
effects caused by the robot’s mass distribution are negligible. Unlike the inverted pendulum
dynamics, the dynamics for the LIP model are linear. This is due to the assumption that the
height of the COM is kept constant in the development of the LIP model [109]. Based on its
simplicity and linearity, the LIP model has been utilized for real-time trajectory optimization
of legged robots, see, e.g., [66, 94, 95, 162]. However, the LIP model has some limitations.
In particular, it assumes that the Center of Pressure (COP) of the robot does not leave the
support polygon (i.e., the Zero Moment Point (ZMP) criterion [199]). Hence, the generated
gaits are quasi-statically stable but not dynamically stable. Some extended LIP models
have been proposed to address dynamic gaits while minimizing the model complexity. One
of the extensions is the Spring Loaded Inverted Pendulum (SLIP) model, which includes a
spring on the massless rod in the inverted pendulum structure. The SLIP model allows the
consideration of dynamic motions, including nonnegligible flight phases and hoping [159], and
can be used to model both walking and running [160, 175]. Another extended concept of the
LIP model is the Divergent Component of Motion (DCM), also referred to as the capture
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Figure 1.9: Centroidal dynamics.

point in three-dimension. We remark that the DCM does not increase the complexity of
the LIP model as we observe in the SLIP model. Instead, it introduces additional design
variables to impose the COM to follow the DCM [67, 94, 95, 96]. These extensions show
that the LIP model still has the potential to be used as a basic reduced-order model because
of its unbeatable advantages.

Furthermore, we hypothesize that it is suitable for reduced-order models of collaborative
locomotion, which will not have any severe dynamic motions. For this reason, the LIP model
will be considered as a candidate in Chapters 3 and 4 to model the underlying dynamics to
facilitate real-time motion planning for collaborative locomotion of quadrupedal robots.

Centroidal Dynamics: The significant difference between the centroidal dynamics and
LIP model is the description of the mass distribution. Unlike the LIP model, which uses
a point mass on the COM position, the centroidal dynamics consider linear and angular
momenta together with a mass. Due to this reason, this method is currently categorized
under the reduced-order models, but it can be considered as a step towards the full-order
dynamical modeling [54, 111, 120, 204]. The advantage of the centroidal dynamics is that the
user can decide about the complexity level of the reduced-order model for motion planning
and control.

1.4.4 Trajectory Optimization

Gait planning for dynamical models of legged locomotion can be described as an optimal
control problem. The objective is to minimize a cost function while steering the system’s
state from an initial condition to a final one and subject to a set of state and control con-
straints. These optimal control problems are usually formulated for discretized dynamics of
the robots. This would reduce the original optimal control problem into a finite-dimensional
NLP. These optimization problems are, in general, complex to solve due to nonlinearity and
high dimensionality. Gait planning based on reduced-order models can generate relatively
light optimal control problems that can be solved in real-time, even though they sacrifice the



1.4. LITERATURE REVIEW: MODELING, PLANNING, AND CONTROL OF LEGGED ROBOTS 13

dynamic richness. On the other hand, high dimensionality in full-order dynamical models
makes it difficult to solve the corresponding NLPs. This section reviews NLP-based gait
planning approaches [8, 9, 11, 39, 102, 103, 113, 125, 153, 157, 166, 205, 206]. Further-
more, the basic concepts of convex optimization, including Linear Programming (LP) and
QP [56, 57, 66, 94, 95, 115, 162, 198], will be discussed.

General Optimization Problems for Gait Planning: The general gait planning prob-
lem consists of finding the open-loop control input u(t) over a finite time interval t ∈ [t0, tf ]
such that for a given initial state x0 at t0, the state trajectory reaches the desired final state
xf at tf while the state and control constraints are met. More formally, this optimization
problem can be formulated with a cost function (e.g., energy or cost of mechanical trans-
port) and a set of equality and inequality constraints. The equality constraints address the
dynamics and steering problem whereas the inequality constraints consider the feasibility of
the joint positions, velocities, torques, and friction cone conditions. If the cost functions or
constraints are nonlinear, the optimization problem becomes an NLP. These optimization
problems can be solved with commercially available solvers such as IPOPT [200], SNOPT
[83], and FMINCON [135].

Convex Optimization Problems for Gait Planning: The optimization problem we are
usually interested in has a specific format compared to the general optimization problem,
especially in the cost function structure. In cases where the constraints are linear, and the
objective function is linear or quadratic, the problem formulation results in either an LP or
QP. These problems are convex and can be solved effectively in a real-time manner. The LP
and QP problems often arise from the MPC problems. In these optimal control formulations,
the MPC problem is usually applied to the linearized reduced-order dynamics of the robot
(see Section 1.4.5 for more details). Suppose the gait planning problem becomes an NLP.
In that case, a proper initial condition could potentially reduce the optimization time, but
finding a feasible solution in real-time still poses a significant challenge. On the other hand,
if the problem becomes an LP or QP, it can be solved fast (without violating real-time
restrictions) when compared to the NLP. The LP or QP can be solved with commercially
available solvers such as ECOS [59], OSQP [185], or QPSWIFT [150].

1.4.5 Existing Control Techniques for Legged Robots

This section focuses on legged robots’ control problem to guarantee dynamic stability while
walking from point A to point B. In the context of the optimal control problem, we consider
the MPC approach to generate the optimal trajectories while asymptotically stabilizing the
target points for the dynamical systems. Furthermore, nonlinear control techniques that
address the full-order and hybrid dynamical models of locomotion are discussed.

MPC: MPC is a conventional method, which was initially developed for industrial and slow
dynamical processes [30]. With the recent advances in computation and the development of
efficient optimization algorithms, MPC-based approaches have been getting more attention
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in the field of robot locomotion [14, 57, 144, 197]. One of the significant characteristics
of the MPC is that it optimizes the sequence of control inputs according to the system’s
dynamics and state and input constraints over a finite-time control horizon. The MPC
then employs the current control action and optimizes again repeatedly, thus differing from
Linear-Quadratic Regulator (LQR).

MPC-based approaches integrated with reduced-order models have been used for real-time
path planning of bipedal and quadrupedal locomotion, see e.g., [66, 94, 109, 162]. Most
of these approaches address LIP models for bipedal locomotion while generating optimal
trajectories for the COM and COP of the robot subject to the ZMP conditions [199] and
feasibility of the GRF. These techniques, however, cannot be easily extended to quadrupedal
locomotion as the LIP-based MPC approaches do not consider the feasibility of all individual
GRFs. To tackle this problem, [56, 57, 197] have developed an interesting convex optimiza-
tion formulation based on MPC and SRB dynamics. In particular, the MPC approach of
[56, 57, 197] plans for the optimal GRFs of the contacting leg ends at every time sample
(e.g., 200 Hz) for agile quadrupedal locomotion. Alternative interesting approaches for agile
locomotion have utilized nonlinear MPC [145], policy-regularized MPC [27], and QP-based
whole-body control [70, 118]. Although state-of-the-art techniques for MPC-based control
of quadrupedal locomotion have shown a very good level of robustness, they require solving
MPC at every time sample. These MPC problems are typically formulated as convex QPs
for robots with light legs and may have a significant number of decision variables to be op-
timized. This makes the MPC-based techniques computationally intensive. In the context
of distributed control of collaborative locomotion, we are interested in developing control
algorithms with less computational load for which the MPC problems do not need to be
solved every time sample. This will be addressed in Chapters 2, 3, and 4.

Other Nonlinear Control Approaches: State-of-the-art nonlinear control techniques
that address the hybrid nature and full-order dynamical models of locomotion have been
developed based on hybrid reduction [18, 20, 21, 87], controlled symmetries [179], transverse
linearization [130, 176], and HZD [19, 205]. Transverse linearization and HZD approaches
can systematically address underactuation. HZD controllers have been numerically and
experimentally validated for the motion control of bipedal robots [19, 42, 103, 131, 166, 171,
182, 183], powered prosthetic legs [90, 213], and exoskeletons [1]. As discussed before, the
full-order gait planning in the HZD approach is typically formulated as an NLP problem.
We aim to develop hierarchical control algorithms based on MPC and HZD to address the
real-time motion planning problem while stabilizing the full-order dynamical system. This
will be discussed in Chapters 2 and 3.

1.5 Relevant Publications

As part of this dissertation, three journal articles are written, one published by the IEEE
Robotics and Automation Letters (RAL) and another is published by the ASME Journal
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of Dynamic Systems, Measurement, and Control. The latest journal article is planned to
submit in IEEE Transactions on Robotics (T-RO).

Chapters 2, 3, and 4 comprise of the materials of these three articles as listed below:

[J1] J. Kim, R. T. Fawcett, V. R. Kamidi, A. D. Ames and K. Akbari Hamed, “Lay-
ered Control for Cooperative Locomotion of Two Quadrupedal Robots: Central-
ized and Distributed Approaches,” IEEE Transactions on Robotics, In prepara-
tion.

[J2] J. Kim, and K. Akbari Hamed, “Cooperative locomotion via supervisory predic-
tive control and distributed nonlinear controllers,” ASME Journal of Dynamic
Systems, Measurement, and Control, Vol. 144, Issue. 3, p. 031005, Dec., 2021.

[J3] K. Akbari Hamed, J. Kim, and A. Pandala, “Quadrupedal locomotion via event-
based predictive control and QP-based virtual constraints,” IEEE Robotics and
Automation Letters, Vol. 5, Issue 3, pp. 4463-4470, July 2020.

[J4] V. R. Kamidi, J. Kim, R. T. Fawcett, A. D. Ames and K. Akbari Hamed,
”Distributed Quadratic Programming-Based Nonlinear Controllers for Periodic
Gaits on Legged Robots,” IEEE Control Systems Letters, vol. 6, pp. 2509-2514,
2022

In addition, I have contributed to the following journal article.

[J5] R. T. Fawcett, A. Pandala, J. Kim, and K. Akbari Hamed, “Real-time planning and
nonlinear control for quadrupedal locomotion with articulated tails”, ASME Journal
of Dynamic Systems, Measurement, and Control, Vol. 143, Issue. 7, p. 071004, Jul,
2021.

1.6 Outline

This dissertation is organized as follows.

Chapter 2 presents a hierarchical control scheme, based on event-based MPC, HZD, and
QP, to generate and stabilize locomotion patterns in a real-time manner for dynamical mod-
els of single-agent quadrupedal robots. The higher level of the proposed control scheme is
developed based on an event-based MPC that computes the optimal reduced-order trajecto-
ries. To bridge the gap between reduced- and full-order models, QP-based virtual constraint
controllers are developed at the lower level of the proposed control scheme to impose the
full-order dynamics to track the optimal trajectories while having all individual GRFs in
the friction cone. The analytical results are numerically verified to demonstrate stable and
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robust locomotion of a 22 DOF quadrupedal robot, in the presence of payloads, external
disturbances, ground height variations, and uncertainty in contact models.

Chapter 3 presents a hierarchical nonlinear control algorithm for the real-time planning and
control of cooperative locomotion of legged robots that collaboratively carry objects. The
higher level of the proposed algorithm employs a supervisory controller, based on event-based
MPC, to effectively compute the optimal reduced-order trajectories for legged co-robots. The
lower level of the proposed algorithm employs distributed nonlinear controllers to reduce the
gap between reduced- and full-order complex models of cooperative locomotion. The chapter
numerically investigates the effectiveness of the proposed control algorithm via full-order
simulations of a team of collaborative quadrupedal robots, each with a total of 22 DOFs.
The chapter finally investigates the robustness of the proposed control algorithm against
uncertainties in the payload mass and changes in the ground height profile.

Chapter 4 presents a layered control approach for real-time trajectory planning and con-
trol of robust cooperative locomotion by two holonomically constrained quadrupedal robots.
An innovative and interconnected network of reduced-order models, based on the SRB dy-
namics, is developed for trajectory planning purposes. At the higher level of the control
scheme, two different MPC algorithms are proposed to address the optimal control prob-
lem of the interconnected SRB dynamics: centralized and distributed MPCs. The MPCs
compute the reduced-order states, GRFs, and interaction wrenches between the agents. The
distributed MPC assumes two local QPs that share their optimal solutions according to a
one-step communication delay and an agreement protocol. At the lower level of the control
scheme, distributed nonlinear controllers, based on QP and virtual constraints, are devel-
oped to impose the full-order dynamics to track the prescribed and optimal reduced-order
trajectories and GRFs. The effectiveness of the proposed layered control approach is verified
with extensive numerical simulations and experiments for the blind, robust, and cooperative
locomotion of two holonomically constrained A1 robots with different payloads on different
terrains and in the presence of external disturbances. It is shown that the distributed MPC
has a performance similar to that of the centralized MPC, while the computation time is
reduced significantly.

Chapter 5 presents concluding remarks and future directions to be conducted. It briefly
summarizes the work done, which consists of the materials of Chapters 2, 3, and 4.
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Chapter 2

Legged Locomotion via Event-Based
MPC and Virtual Constraints

2.1 Introduction

The objective of this chapter is to develop a hierarchical control algorithm, based on Model
Predictive Control (MPC), nonlinear control, and Quadratic Programming (QP), to gen-
erate and stabilize locomotion trajectories for complex dynamical models of single-agent
quadrupedal robots in real time. The proposed approach employs a higher-level and event-
based MPC at the beginning of each continuous-time domain (i.e., event) that generates
optimal trajectories for a reduced-order Linear Inverted Pendulum (LIP) model subject to
the feasibility of the net Ground Reaction Force (GRF). The stability of the system subject
to event-based MPC is investigated to demonstrate that the MPC does not need to be solved
at every time sample. This significantly reduces the computational burden associated with
MPC-based path planning approaches of legged locomotion while guaranteeing stability. To
reduce the difference between the reduced-order and full-order models of locomotion, a QP-
based nonlinear controller is solved at the lower level of the proposed approach to impose
the full-order dynamics to track the optimal trajectories while keeping all individual GRFs
feasible.

2.2 Hybrid Models of Locomotion

Models of legged locomotion are hybrid and can be illustrated as directed graphs. In this
representation, continuous-time dynamics are represented by vertices of the graph to de-
scribe the evolution of the system by the Lagrangian dynamics. The edges of the graph
then represent the instantaneous and discrete-time transitions amongst the continuous-time
dynamics to model the possible and abrupt changes in the state vector according to the
rigid impacts of the leg ends with the environment [16, 97, 98, 104, 206]. In this work, we
consider a general and aperiodic locomotion pattern for the quadrupedal robot with start
and stop conditions as a directed graph G = (V , E) (see Fig. 2.1), where the vertices set
V represents the continuous-time domains (e.g., double-, triple-, and quadruple-contact do-
mains) and edges set E ⊂ V × V denotes the discrete-time transitions (e.g., impacts and
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Figure 2.1: Illustration of a locomotion pattern with the corresponding graph G = (V, E). Each
continuous-time domain shows the support polygon as convex hull.

take-offs) (see Fig. 2.1). We further suppose that there are M ≥ 1 continuous-time domains
and each continuous-time domain consists of Nd ≥ 1 grid points (i.e., time samples). For
future purposes, the time sample is denoted by Ts.

We consider a full-order dynamical model of Vision 60 that is augmented by a Kinova robotic
manipulator for locomotion and manipulation purpose. Vision 60 is a quadrupedal robot
manufactured by Ghost Robotics. The floating-base model of the composite robot consists
of 22 DOFs of which 12 DOFs are actuated and assigned to legs (see Fig. 2.2). In particular,
each leg of the robot has an actuated 2 DOF hip joint plus an actuated 1 DOF knee joint
and ends at a point foot. In addition, 4 DOFs with 4 actuators are assigned to the Kinova
manipulator. The remaining 6 DOFs are unactuated and describe the absolute position and
orientation of the robot with respect to an inertial world frame. The composite mechanical
system weighs around 35 (kg).

The generalized coordinates of the robot can be expressed as

q := col(pb, ϕb, qbody) ∈ Q ⊂ R22, (2.1)

in which pb ∈ R3 and ϕb ∈ R3 describe the absolute position and orientation of the torso,
respectively. Moreover, qbody ∈ R16 represents the shape (i.e., internal joints) of the robot. In
our notation, Q represents the configuration space, and “col” denotes the column operator.
The state vector of the mechanical system is taken as

x := col(q, q̇) ∈ X , (2.2)

where X := TQ := Q× R22 denotes the state manifold. The control inputs (i.e., joint-level
torques) are finally represented by τ ∈ R16. The evolution of the robot during continuous-
time domains can be expressed by the following ordinally differential equation (ODE) arising
from the Euler-Lagrange equations and the principle of virtual work

D(q) q̈ +H (q, q̇) = Υ τ +
∑
ℓ∈C

J⊤
ℓ (q)Fℓ, (2.3)

where D(q) ∈ R22×22 represents the positive definite mass-inertia matrix, H(q, q̇) ∈ R22

denotes the Coriolis, centrifugal, and gravitational forces, and Υ ∈ R22×16 represents the
input distribution matrix with the property rankΥ = 16. In our notation, C is the index
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Figure 2.2: Illustration of 22 DOFs for the full-order model of the composite robot. The
robot is composed of the 18-DOF Vision 60 plus the 4-DOF Kinova arm. Six unactuated
DOFs are associated with the absolute position and orientation of the torso frame with
respect to an inertial world frame. Each leg of the robot then consists of three actuated
joints as hip roll, hip pitch, and knee joints. The arm is finally composed of four actuated
joints. The axis of actuation for actuated joints are shown with dashed lines, where the axes
with circle ends, axes with square ends, and axes with triangle ends represent the x, y, and
z directions, respectively.

set of contact points with the ground. Furthermore, for every ℓ ∈ C, Jℓ(q) ∈ R3×22 and
Fℓ ∈ R3 denote the corresponding contact Jacobian matrix and GRF, respectively. The
contact forces can be computed using 1) the rigid contact assumption and hybrid system
approach [11, 206], 2) compliant contact models (e.g., LuGre model [55]), or 3) nonlinear and
linear complementarity problems [186] as well as optimization-based techniques [105, 189].

We remark that the model (2.3) is valid if Fℓ ∈ FC for all ℓ ∈ C, where

FC :=

{
col(Fx, Fy, Fz) |Fz > 0, ±Fx <

µ√
2
Fz, ±Fy <

µ√
2
Fz

}
(2.4)

denotes the friction cone for some static friction coefficient µ. For later purposes, the equa-
tions of motion in (2.3) can be written in a state space form as

ẋ =

[
q̇

−D−1(q)H(q, q̇)

]
+

[
0

D−1(q)Υ

]
τ +

∑
ℓ∈C

[
0

D−1(q) J⊤
ℓ (q)

]
Fℓ

=: f(x) + g(x) τ + w(x)F, (2.5)

in which F := col{Fℓ | ℓ ∈ C} represents the contact forces. In addition, the model assumes
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Figure 2.3: Illustration of the proposed hierarchical control algorithm based on nonlinear control,
QP, and event-based MPC.

a rigid contact point between the stance leg ends of the robot and the ground. This assump-
tion makes the leg ends acceleration zero which can be expressed as the following algebraic
constraint

p̈st
ℓ = Jℓ(q) q̈ +

∂

∂q
(Jℓ(q) q̇) q̇ = 0, ∀ℓ ∈ C (2.6)

where pst
ℓ ∈ R3 denotes the Cartesian coordinates of the stance leg end ℓ ∈ C. For future

purposes, we define pst := col{pst
ℓ | ℓ ∈ C} as the Cartesian coordinates of all contact points.

In addition, J(q) := ∂pst

∂q
(q) is defined as the corresponding contact Jacobin matrix.

The evolution of the mechanical system during discrete-time transitions can be expressed
via instantaneous mappings arising from rigid impact models (see e.g., [97, 104]). In this
chapter, we focus on the continuous-time domains of locomotion to present the nonlinear
control strategy. More details about the derivation of discrete-time transitions can be found
in [11].

2.3 QP-Based Virtual Constraint Controllers

The objective of this section is to present a QP-based nonlinear controller that can asymptot-
ically stabilize locomotion patterns for multi-domain hybrid dynamical models of locomotion
while keeping the individual GRFs in the friction cone. Here, we make use of the concept of
virtual constraints to design this nonlinear controller. Virtual constraints are defined as a
set of kinematic constraints that can be imposed by the action of feedback control laws to
coordinate the motion of links within a stride [42, 90, 93, 129, 131, 140, 159, 166, 171]. In
particular, virtual constraints are defined as output functions for continuous-time dynamics
of locomotion models. The output functions are then regulated via the action of a feedback
controller (e.g., I-O linearization [106]). In this work, we address holonomic virtual con-
straints with relative degree 2 for the purpose of position tracking. Alternatively, one can
use relative degree 1 nonholonmic constraints or a combination of holonomic and nonholo-
nomic constraints as [11, 100]. The QP-based nonlinear controller will be utilized at the low
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level of the proposed hierarchical control algorithm. The higher-level of the algorithm will
be developed in Section 2.4 for the path planning purpose.

2.3.1 Virtual Constraints

In this work, we define a set of time-varying and holonomic virtual constraints as follows:

y(x, t) := h(q, t) := h0(q)− hd (s, α) , (2.7)

in which h0(q) denotes a set of holonomic quantities to be controlled, referred to as controlled
variables. In addition, hd(s, α) represents the desired evolution of the controlled variables in
terms of the phasing variable s. Here,

s :=
t− t+

Nd Td
(2.8)

denotes the phasing variable with t+ being the initial time for the current domain and NdTd
representing an estimated elapsed time for the domain.

The desired trajectory hd(s, α) is taken as a Bézier polynomial with a coefficient matrix α.
During the quadruple-contact domains, we choose h0(q) ∈ R6 as the roll, pitch, and yaw
angles of the torso together with the COM positions. The idea is to regulate the absolute
orientation of the robot while imposing the actual COM coordinates to follow the optimal and
desired COM trajectory generated by the MPC in Section 2.4. Here, the coefficient matrix
α can be chosen via least squares at the beginning of each domain such that hd(s, α) has the
best fit to the optimal and desired COM trajectory over Nd samples. For double- and triple-
contact domains, h0(q) is augmented with the Cartesian coordinates of the swing leg ends for
foot placement. The idea is to follow a desired foot trajectory in the workspace starting from
the previous foothold and ending at the next preplanned foothold. This makes the output
function 12- and 9-dimensional for the double- and triple-contact domains, respectively. To
control the configuration of the manipulator, we augment h0(q) and hd(s, α) by the Cartesian
coordinates of the end-effector (EE) and its desired trajectory in the workspace, respectively.

2.3.2 QP-Based I-O Linearization

Differentiating the output function (2.7) along (2.5) results in the following output dynamics

ÿ = LgLfy(x, t) τ + LwLfy(x, t)F + L2
fy(x, t) +

∂2y

∂t2
(x, t)

= −KD ẏ −KP y, (2.9)
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in which KP and KD are positive definite matrices. In addition, LgLfy, LwLfy, and L2
fy are

Lie derivatives defined as follows:

LgLfy(x, t) :=
∂h0
∂q

(q)D−1(q)Υ

LwLfy(x, t) :=
∂h0
∂q

(q)D−1(q) J⊤(q)

L2
fy(x, t) :=

∂

∂q

(
∂h0
∂q

(q) q̇

)
q̇ − ∂h0

∂q
(q)D−1(q)H(q, q̇). (2.10)

To compute the required torques that drive the outputs to zero, one would need to solve
for τ from (2.9). However, since the contact force measurements are not available for the
studied robot, one would need to estimate the contact forces F = col{Fℓ| ℓ ∈ C}. To address
this problem, we assume a rigid contact model with the walking surface as given in (2.6).
The rigid contact assumption together with (2.5) then yields

p̈st = LgLfp
st(x) τ + LwLfp

st(x)F + L2
fp

st(x) = 0, (2.11)

where the Lie derivatives are defined as follows:

LgLfp
st(x) := J(q)D−1(q)Υ

LwLfp
st(x) := J(q)D−1(q) J⊤(q)

L2
fp

st(x) :=
∂

∂q
(J(q) q̇) q̇ − J(q)D−1(q)H(q, q̇). (2.12)

Next, we need to look for the values of (τ, F ) that satisfy (2.9) and (2.11) with contact forces
being in the friction cone, that is, Fℓ ∈ FC for all ℓ ∈ C. For this purpose, we set up the
following real-time QP

min
(τ,F,ω)

1

2
∥τ∥22 +

γ

2
∥ω∥22

s.t. LgLfy τ + LwLfy F + L2
fy +

∂2y

∂t2
+ ω = vPD(y, ẏ)

LgLfp
st τ + LwLfp

st F + L2
fp

st = 0

Fℓ ∈ FC, ℓ ∈ C, τmin ≤ τ ≤ τmax, (2.13)

in which vPD(y, ẏ) := −KP y−KD ẏ is the PD action. The equality constraints for the QP are
set up based on the output dynamics (2.9) as well as the stance foot accelerations assumption
(2.11). We introduce a defect variable ω in the equality constraint of QP that corresponds
to the output dynamics in case the decoupling matrix LgLfy is singular. To minimize the
effect of the defect variable, we then add a quadratic term γ

2
∥ω∥22 to the cost function of the

QP to ensure that the 2-norm of the defect variable is as small as possible. Here, γ > 0 is
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Figure 2.4: Illustration of the reduced-order model of locomotion (i.e., LIP dynamics) over different
continuous-time domains. The figure also depicts the time-varying support polygon used for the
ZMP condition.

a weighting factor. The other term in the cost function tries to find the minimum 2-norm
(minimum power) torques that satisfy the equality and inequality constraints. Furthermore,
τmin and τmax are the admissible bounds on the torques.

2.4 Event-Based Predictive Control

The objective of this section is to present the higher-level and event-based MPC that uses
a reduced-order model of locomotion such as the LIP model for the real-time trajectory
planning purpose. The event-based MPC addresses the steering problem of the reduced-
order dynamics from an initial position to a final position while satisfying the feasibility
constraints (i.e., ZMP and friction cone conditions) (see Fig. 2.4). The optimal and desired
COM trajectories generated by the MPC algorithm are sent to the lower-level nonlinear
controllers of Section 2.3 for the tracking purpose.

2.4.1 Reduced-Order LIP Model

The LIP model can be described by the following ODEs [109][
r̈COM
x

r̈COM
y

]
=

g0
rCOM
z

[
rCOM
x − uCOP

x

rCOM
y − uCOP

y

]
, (2.14)
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where rCOM := col(rCOM
x , rCOM

y ) ∈ R2 denotes the Cartesian coordinates of the COM with
respect to the inertial world frame, projected onto the xy-plane, rCOM

z represents the constant
height of the COM, g0 is the gravitational constant, and uCOP := col(uCOP

x , uCOP
y ) ∈ R2

denotes the Cartesian coordinates of the COP. From (2.14), the net GRF applied to the
COM can be expressed as

Fnet :=
∑
ℓ∈C

Fℓ = mtot col(r̈COM
x , r̈COM

y , g0), (2.15)

in which mtot represents the total mass of the robot. By defining the LIP state vector

xCOM := col(rCOM
x , ṙCOM

x , rCOM
y , ṙCOM

y ) ∈ R4 (2.16)

and employing the zero-order hold (ZOH) discretization approach for the sampling time Td,
the ODEs in (2.14) can be discretized as follows

xCOM[k + 1] = Ad x
COM[k] + Bd u

COP[k], (2.17)

where k ∈ Z≥0 represents a non-negative integer with Ad ∈ R4×4 and Bd ∈ R4×2 being the
state and input matrices, respectively.

2.4.2 Steering Problem

We are interested in steering the discrete-time dynamics (2.17) from an initial state to a
final state over M continuous-time domains. We define the domain indicator function as
ζ : Z≥0 → {1, 2, · · · ,M} by ζ[k] := ⌊ k

Nd
⌋+ 1 for 0 ≤ k < MNd and ζ[k] := M for k ≥MNd

to assign the domain index for every time sample k ∈ Z≥0. Here, ⌊.⌋ represents the floor
function. For the feasibility of the model, we assume that the input uCOP[k] lies in the support
polygon which is defined as the convex hull of the contacting points with the ground. That
is,

uCOP[k] ∈ Uζ[k] (2.18)
for all k ∈ Z≥0, where Uζ[k] ⊂ R2 is the corresponding convex hull for the domain ζ[k] (see Fig.
2.5). If we define the contact coordinates matrix for the domain ζ[k] as Cζ[k] whose columns
represent the Cartesian coordinates of the contacting feet with the ground, uCOP[k] ∈ Uζ[k]

is equivalent to the existence of a time-varying vector λ[k] such that

0 ≤ λ[k] ≤ 1, 1⊤λ[k] = 1, uCOP[k] = Cζ[k]λ[k]. (2.19)

We remark that in our notation, 0 and 1 denote vectors whose elements are zero and one,
respectively. In addition, for the feasibility of the LIP model, the net force must lie in the
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Figure 2.5: Illustration of a locomotion pattern with the corresponding graph G = (V, E) and
event-based MPC law.

friction cone, i.e., Fnet ∈ FC. This latter condition together with (2.14) can be expressed as

Φ xCOM[k] + Ψ uCOP[k] ≤ η, ∀k ∈ Z≥0 (2.20)

for some proper Φ and Ψ matrices and some proper η vector.

Problem 1 (Optimal Steering Problem). For a given locomotion graph G, a phase index
function ζ, a set of known contact coordinates matrices {Cζ[k]}k∈Z≥0

, an initial state xCOM
0 ,

a final state xCOM
f , and a steering time Tf ∈ Z≥0, the optimal steering problem consists of

finding an optimal sequence of control (i.e., COP) inputs uCOP[k] for 0 ≤ k ≤ Tf − 1 that
steer (2.17) from xCOM

0 to xCOM
f subject to (2.19) and (2.20).

2.4.3 Event-Based MPC

To address Problem 1, we set up an event-based MPC that is solved at the beginning of each
domain (i.e., event) with some control horizon N = nNd and n ≥ 1. In particular, for every
time sample k = mNd with m ∈ Z≥0, we consider the following finite-time optimal control
problem

min
UCOP
k→k+N−1|k

Jk

(
xCOM[k], UCOP

k→k+N−1|k

)
= p

(
xCOM
k+N |k

)
+

N−1∑
i=0

L
(
xCOM
k+i|k, u

COP
k+i|k

)
s.t. xCOM

k+i+1|k = Ad x
COM
k+i|k +Bd u

COP
k+i|k

Φ xCOM
k+i|k +Ψ uCOP

k+i|k ≤ η

uCOP
k+i|i ∈ Uζ[k+i], i = 0, 1, · · · , N − 1, (2.21)



2.5. NUMERICAL SIMULATIONS 27

where UCOP
k→k+N−1|k := col(uCOP

k|k , · · · , uCOP
k+N−1|k) and xCOM

k+i|k represents the estimated state vec-
tor at time k + i predicted at time k according to the recursive law xCOM

k+i+1|k = Ad x
COM
k+i|k +

Bd u
COP
k+i|k starting from the current state xCOM

k|k := xCOM[k]. In an analogous manner, uCOP
k+i|k

denotes the COP input at time k + i computed at time k. Furthermore, p(xCOM
k+N |k) and

L(xCOM
k+i|k, u

COP
k+i|k) are the terminal and stage costs, respectively, defined as p(xCOM

k+N |k) :=

∥xCOM
k+N |k − dCOM

k+N |k∥2P and L(xCOM
k+i|k, u

COP
k+i|k) := ∥xCOM

k+i|k − dCOM
k+i|k∥2Q + ∥uCOP

k+i|k∥2R for some posi-
tive definite matrices P ∈ R4×4, Q ∈ R4×4, and R ∈ R2×2, in which ∥z∥2P := z⊤Pz. In
our notation, dCOM

k+i|k represents a desired state trajectory for xCOM
k+i|k that is smooth in i (e.g.,

linear) while starting at the current state xCOM[k] and ending at the final state xCOM
f . Let

U⋆
k→k+N−1|k := col(u⋆COP

k|k , · · · , u⋆COP
k+N−1|k) be the optimal solution of the problem (2.21). Then

in our proposed approach, the first Nd components of U⋆
k→k+N−1|k, that correspond to the

time samples of the current continuous-time domain, are employed to the system (2.17) (see
Fig. 2.5), that is,

uCOP[k + j] = u⋆COP
k+j|k , j = 0, 1, · · · , Nd − 1. (2.22)

Remark 2.1. We remark that the MPC formulation (2.21) together with (2.19) can be
expressed as QP in terms of the decisions variables {xCOM

k+i|k}Ni=1, {uCOP
k+i|k}

N−1
i=0 , and {λk+i|k}N−1

i=0

to retain the sparsity structure of [201]. To make the cost function of this QP positive
definite in terms of all decision variables, one can add a term corresponding to λk+i|k, i.e.,
Jk = p(xCOM

k+N |k) +
∑N−1

i=0 L(xCOM
k+i|k, u

COP
k+i|k) + H(λk+i|k), where H(λk+i|k) := ∥λk+i|k − λdes

k+i|k∥2R̂
for some desired trajectory λdes

k+i|k and some positive definite matrix R̂.

2.5 Numerical Simulations

The objective of this section is to numerically verify the effectiveness of the theoretical
results. We consider five different directions (i.e., forward, backward, sideways, diagonal,
and in-place) of trot gaits with start and stop conditions whose graphs G consist of M = 20
continuous-time domains (see Fig. 2.5). We choose the sampling time to discretize the LIP
dynamics as Td = 80 (ms) with Nd = 4 grids per each domain. The control horizon for
the event-based MPC is chosen as N = nNd = 8 which considers two domains ahead. We
have observed that for every Td in [60, 80] (ms) with Nd = 4, the proposed control scheme
can stabilize the locomotion patterns. Since we prefer to have longer duration for domains
of locomotion such that the lower-level controller has enough time to track the prescribed
optimal motion by the MPC, we choose Td = 80 (ms). The control horizon N can also
be chosen to include more than two domains, but this will increase the number of decision
variables and the computation time. In addition, for N = Nd = 4 –which only considers
the current domain– the event-based MPC cannot stabilize the motion. Hence, we choose
N = 2Nd = 8. The other parameters are taken as P = 103 I4×4, Q = I4, R = I2×2,
and R̂ = 0.01I. With the height of the COM being 0.5 (m) and the friction coefficient
µ = 0.4, the higher-level MPC is solved in an event-based manner, that is approximately
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Figure 2.6: Plot of the COM and COP trajectories for the forward and diagonal trot gaits
of the reduced-order system. Convergence to the target points (0.82, 0) and (0.58, 0.34) is
clear.

every NdTd = 0.32 seconds. For the first, middle, and last domains, the MPC has 64, 72,
and 80 decision variables, respectively, as the dimension of λk+i|k changes per domain.

Figure 2.6 depicts the evolution of the COM and COP for the forward and diagonal trot
gaits of the discrete-time dynamics with the step lengths of (10, 0) (cm) and (7, 4) (cm)
in R2, respectively. Here, we make use of ECOS QP [59] to solve the MPC in MATLAB.
Convergence to the target (final) points (0.82, 0) and (0.58, 0.34) is clear. Target points are
chosen as the geometric center of the contact points in the last domain. We remark that the
proposed MPC problem of this work has less computational load compared to [57] with 1

3
of

the number of decision variables that are optimized at a slower rate. Next, we study the full-
order model of the robot in RaiSim [105] with rigid contact models. The lower-level QP for
I-O linearization has 37 decision variables for both double- and quadruple-contact domains,
which is approximately 50% of the number of decisions variables used for the higher-level QP.
The lower-level QP is solved with qpSWIFT [150] in RaiSim and γ = 107 at every 1 (ms). The
computation time of the MPC on a laptop computer with an Intel(R) Core(TM) i7-5600U
CPU 2.60GHz (2 cores) and 8GB of RAM is 0.2528 (ms). The low-level QP problem for the
double- and quadruple-contact domains also takes 0.2334 (ms) and 0.4735 (ms), respectively.
All state components of the robot, except the absolute Cartesian coordinates of the torso
(i.e., pb), are measurable by an inertial measurement unit as well as encoders. Analogous
to the approach of [28], we utilize a Kalman filter to estimate pb. Figures 2.7(a) and 2.7(b)
illustrate the evolution of the virtual constraints and torque inputs (i.e., before the gear ratio)
for the full-order model of the forward and diagonal trot gaits with the maximum speed of
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Figure 2.7: Plot of the virtual constraints and torque inputs in RaiSim for (a) forward trot,
(b) diagonal trot, and (c) forward trot with payloads. Here, yx, yy, yz, yroll, ypitch, yyaw denote
the first six components of the virtual constraints that relate to the absolute position and
orientation of the body. In addition, FH, FK, RH, and RK stand for the front hip, front
knee, rear hip, and rear knee of the left-hand-side of the robot, respectively. The subscripts
“roll” and “pitch” for the torque plots also denote the roll and pitch motions of the hip joints.
(d) Plot of the virtual constraints and torques for trot gait subject to the LuGre contact
model in MATLAB/Simulink when the control frequency is reduced to 500 Hz with a delay
of 2 (ms) in solving QPs.

Figure 2.8: Snapshots of (a) the forward trot gait and (b) the diagonal trot gait with the
proposed event-based MPC and QP-based virtual constraint controller.

0.3 (m/s). Snapshots of the forward and diagonal trot gaits can be found in Figs. 2.8(a) and
2.8(b), respectively. To show the robustness of the control system against different contact
models, the full-order model is also simulated in MATLAB/Simulink with LuGre contact
models [55]. The robot still travels in a stable and robust manner towards the target. To
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Figure 2.9: Snapshots of the forward trot gait with an unknown payload of 12 (kg) on the
robot’s torso and an unknown payload of 1.4 (kg) at the robot’s EE.

Figure 2.10: (a) Snapshots of the unstable locomotion with an MPC that is only solved
once at the beginning of the gait. (b) Snapshots of the robustly stable locomotion with the
proposed event-based MPC in the presence of unknown disturbances.

demonstrate the robustness of the proposed control algorithm against the control frequency
as well as time delays, we next assume that the control frequency is reduced from 1 kHz to
500 Hz while there is a latency of 2 (ms) in solving QPs. Figure 2.7(d) illustrates the virtual
constraints profile and the GRFs in one of the stance legs for this case.

Robustness Analysis: To demonstrate the robustness of the closed-loop system against
payloads, we assume that there are two payloads on the robot whose masses are not known
for the controller: a payload of 1.4 (kg) in the robot’s EE together with a payload of 12
(kg) on the torso (40% uncertainty in the total mass). Figure 2.7(c) illustrates the evolution
of the virtual constraints and torques inputs versus time. It is observed that the robot is
capable of rejecting the effect of uncertainties in the total mass during locomotion. The
snapshots of the numerical simulation can be found in Fig. 2.9.

To show the robustness of the proposed controller against external forces acting on the
robot, we study three different scenarios in RaiSim. In the first and second simulations, we
consider persistent external forces along the x- (i.e., direction walking) and y-axes (i.e., lateral
direction), respectively. The forces are taken as sinusoidal disturbance inputs with the period
of 0.5 π = 1.57 (s), where the magnitudes along the x- and y-axes are chosen as 30 (N) and
8 (N), respectively. In the third simulation, we investigate the balance control of the robot
while being pushed from the sides. More specifically, we make use of 4 pendulums with the
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Figure 2.11: Plot of the virtual constraints and torque inputs of the full-order closed-loop
system in RaiSim for forward trot with (a) and (b) external disturbances, (c) external push,
and (d) ground height variations.

Figure 2.12: (a) Snapshots of the unstable locomotion with an MPC that is only solved
once at the beginning of the gait. (b) Snapshots of the robustly stable locomotion with the
proposed event-based MPC in the presence of ground height variations.

mass of 3 (kg) and length of 2.5 (m) that hit the robot during locomotion. The snapshots
of these simulations can be found in 2.10(b). It is observed that the robot is capable of
stable locomotion subject to the above-mentioned external forces. Figures 2.11(a)-(c) depict
the evolution of the virtual constraints and torque inputs versus time. To compare the
performance of the event-based MPC with an MPC algorithm that is only solved once at
the beginning of the gait, Fig. 2.10(a) presents additional simulations. We observe that the
closed-loop system becomes unstable if the MPC is only solved once.

To illustrate the robustness of the controller against ground height variations, we finally
consider a random sequence of ground heights in the discrete set {±1,±2} (cm) over 150
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domains of blind locomotion. The time evolution of the outputs and inputs is depicted in
Fig. 2.11(d). The snapshots of these simulations are depicted in Fig. 2.12(b). Figure 2.10(a)
also represents additional simulations to compare the performance of the closed-loop system
with the event-based MPC and an MPC that is only solved once. It is clear that the event-
based MPC can stabilise the system in the presence of disturbances. Animations of these
simulations can be found online1.

2.6 Summary

This chapter introduced a hierarchical control scheme for quadrupedal locomotion based
on convex optimization, event-based MPC, and virtual constraints. At the higher level of
the control scheme, the event-based MPC computes the optimal trajectory for the COM
of the LIP model to steer the robot from an initial state to a final state while the net
GRF is feasible. It was shown that one would not need to employ the MPC at every time
sample to stabilize the locomotion. The MPC can instead be employed in an event-based
manner at the beginning of each domain to stabilize the target point. This significantly
reduces the complexity for real-time implementation of MPC techniques. The lower-level
controller then fills the gap between the reduced- and full-order dynamics. In particular,
we formulated a QP-based I-O linearization approach to impose the full-order dynamics to
follow the optimal COM trajectory of the reduced-order model while tracking the desired
footholds with feasible individual GRFs. The effectiveness and robustness of the proposed
control scheme were demonstrated via numerical simulations of a full-order model for a 22
DOF quadrupedal robot in the presence of payloads, external disturbances, ground height
variations, and different contact models. The framework can systematically address a range
of locomotion patterns such as forward, backward, lateral, diagonal, and in-place gaits.

In the next chapter, we will extend the concept of event-based MPC for cooperative locomo-
tion of multi-agent legged robots.

1https://youtu.be/RJT7kJaONCc

https://youtu.be/RJT7kJaONCc


Part II

Cooperative Locomotion via
Supervisory MPC and Distributed

Nonlinear Controllers

33



Chapter 3

Collaborative Locomotion with
Supervisory MPC

3.1 Introduction

Legged robots can form collaborative robot (co-robot) teams that assist humans in labor-
intensive tasks such as construction, manufacturing, and assembly. The evolution of legged
robots that cooperatively manipulate/transport objects can be described by high-dimensional
and inherently unstable complex systems. Although powerful computational approaches
have allowed the deployment of distributed control algorithms for complex robot systems,
state-of-the-art techniques are tailored to the control of multi-robot systems (MRSs) (see e.g.,
[191, 209]) composed of collaborative robotic arms and multi-fingered hands [143], aerial ve-
hicles [184, 193], and ground vehicles [33, 50, 138], but not sophisticated legged machines
that cooperatively transport objects.

The objective of this chapter is to develop a hierarchical computational algorithm to enable
the real-time planning and control of collaborative locomotion for multiagent legged robotic
systems that carry objects. The higher-level of the proposed algorithm employs a supervi-
sory control, based on event-based Model Predictive Control (MPC), to generate optimal
trajectories for individual agents. In particular, the MPC is formulated for the optimal
control of an interconnected network of holonomically constrained reduced-order systems,
developed based on Linear Inverted Pendulum (LIP) models, subject to having feasible indi-
vidual Ground Reaction Force (GRF)s. To reduce the gap between the network of reduced-
and full-order complex models of collaborative locomotion, distributed nonlinear controllers,
based on Quadratic Programming (QP) and virtual constraints, are implemented at the
lower level of the proposed algorithm to impose the full-order dynamics of each agent to
asymptotically track the optimal trajectories while keeping the GRFs at all contacting leg
ends in the friction cone. The lower-level controller was developed in Section 2.3, and here, it
is integrated with the supervisory MPC. It is shown that the proposed control approach can
generate and robustly stabilize collaborative locomotion patterns for multiagent quadrupedal
robotic systems in the presence of model uncertainties arising from unknown payloads and
ground height variations.

34
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Figure 3.1: Overview of the proposed hierarchical nonlinear control algorithm for collaborative
locomotion of legged robots subject to holonomic constraints. The figure also illustrates the concept
of the interconnected LIP dynamics.

3.2 Interconnected LIP Dynamics

The objective of this section is to derive an interconnected network of reduced-order models
for the cooperative locomotion of N ≥ 2 legged co-robots that carry an object. The reduced-
order network, referred to as the interconnected LIP dynamics, will be utilized for the real-
time trajectory planning in Section 3.3. Here, we consider an open path graph for the
network of LIP dynamics with N vertices and N − 1 edges. In particular, all inner vertices
have degree 2 except the end vertices 1 and N that have degree 1 (see Fig. 3.1). The
vertices of the graph represent the agents, and the edges represent interconnection between
agents. In our notation, N (i) denotes the set of all agents that are adjacent to the agent
i ∈ V := {1, · · · , N}.

Remark 3.1 (Path Graphs). The reason for the assumption of open path graph is to simplify
the presentation of the interaction forces and the interconnected LIP dynamics in Theorem
3.4. This also allows us to easily present the proposed control scheme.

We consider the following LIP dynamics [109] for the locomotion of the agent i ∈ V

r̈i =
g

ℓ
(ri − ui) +

1

m
fi, (3.1)

where ri := col(rxi , r
y
i ) ∈ R2 represents the Cartesian coordinates of the COM of the agent

i in the horizontal plane with respect to the inertial world frame, ℓ denotes the height of



36 CHAPTER 3. COLLABORATIVE LOCOMOTION WITH SUPERVISORY MPC

the COM, g is the gravitational constant, ui := col(uxi , u
y
i ) ∈ R2 represents the Cartesian

coordinates of the center of pressure (COP), fi ∈ R2 denotes the external force on the COM
of the agent i, and m is the total mass of the agent.

Assumption 3.2 (Rigidity). We suppose that there are holonomic constraints amongst the
adjacent agents as follows:

∥ri − rj∥2 := (ri − rj)
⊤(ri − rj) = cij, (3.2)

for all i = 1, · · · , N − 1, j = i + 1 and some constants cij > 0. The forces between agents
i and j ∈ N (i) are further assumed to be fij = −fji = (ri − rj)λij, where λij denotes the
Lagrange multipliers with the symmetry property λij = λji (see Fig. 3.1).

We remark that from Assumption 3.2 as well as the symmetry condition, there are N − 1
independent Lagrange multipliers λij to be determined. For future purposes, we show these
independent Lagrange multipliers as a vector λ := col(λij | i = 1, · · · , N − 1, j = i + 1) ∈
RN−1, where “col” represents the column operator. Throughout this chapter, the boldface
variables will correspond to the global variables of the interconnected LIP network.

Remark 3.3. Assumption 3.2 considers the holonomic constraints amongst the COMs of
the adjacent agents as the LIP dynamics cannot address the moments about the COM. In
particular, the addition of robotic manipulators to the reduced-order model can result in
moments around the COM generated by the arms. Hence, the interconnected LIP dynamics
do not include the manipulator models. However, we remark that the full-order dynami-
cal model of cooperative locomotion in Section 3.5 will consider the holonomic constraints
amongst the manipulators’ end effectors (EEs). We further assume that the EE’s motion
with respect to the body is almost static. The numerical results of Section 3.5 will show the
adequacy and validity of this assumption for the development of the supervisory MPC. The
numerical results will also show that the proposed control algorithms can bridge the gap
between the developed interconnected LIP model and the detailed full-order model. Section
3.6.2 will discuss this assumption and the results with more details.

Using these assumptions, the interconnected network of LIP dynamics can be expressed as

r̈i =
g

ℓ
(ri − ui) +

1

m

∑
j∈N (i)

(ri − rj)λij, i ∈ V (3.3)

subject to the holonomic constraints (3.2). For future purposes, we define the augmented
position, velocity, and control input vectors as r := col(ri | i ∈ V) ∈ R2N , ṙ := col(ṙi | i ∈
V) ∈ R2N , and u := col(ui | i ∈ V) ∈ R2N . By differentiating the holonomic constraint (3.2)
twice along the trajectories of (3.3), we get

(ri − rj)
⊤(r̈i − r̈j) + ∥ṙi − ṙj∥2 = 0. (3.4)
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Combining (3.3) and (3.4) then results in

g

ℓ
∥ri − rj∥2 −

g

ℓ
(ri − rj)

⊤(ui − uj) + ∥ṙi − ṙj∥2

+
(ri − rj)

⊤

m

∑
l∈N (i)

(ri − rl)λil−
∑

k∈N (j)

(rj − rk)λjk

= 0,

for all i = 1, · · · , N − 1 and j = i + 1 which can be written in a compact form to solve for
the Lagrange multipliers λ, i.e.,

ΛN(r)λ = b(r, ṙ,u). (3.5)

Here, ΛN ∈ R(N−1)×(N−1) is a symmetric matrix as follows:
2∥e12∥2 −e⊤12e23 0 0 · · · 0
−e⊤23e12 2∥e23∥2 −e⊤23e34 0 · · · 0

0 −e⊤34e23 2∥e34∥2 −e⊤34e45 · · · 0
... ... ... ... . . . ...
0 0 0 0 · · · 2∥eN−1,N∥2

 ,

in which eij := ri − rj ∈ R2. In addition, b := col(bi | i = 1, · · · , N − 1) ∈ RN−1, where
bi :=

mg
ℓ
(ri − rj)

⊤(ui − uj) − mg
ℓ
∥ri − rj∥2 −m∥ṙi − ṙj∥2 with j = i + 1. In what follows,

we study the conditions under which there is a unique solution λ for the algebraic equation
(3.5).

Theorem 3.4 (Uniqueness of λ). Suppose that N ≥ 2 and Assumption 3.2 is met. Then,
the matrix ΛN(r) is positive definite if ri ̸= rj (or, equivalently, eij ̸= 0) for all i ∈ V and
j ∈ N (i).

Proof. Let us take an arbitrary nonzero vector α := col(α1, · · · , αN−1). Then, α⊤ΛN α can
be expanded as

α⊤ΛN α = ∥e12∥2α2
1 + ∥eN−1,N∥2α2

N−1

+
N−2∑
k=1

{
∥ek,k+1∥2α2

k − 2e⊤k,k+1ek+1,k+2 αk αk+1 + ∥ek+1,k+2∥2α2
k+1

}
≥ ∥e12∥2α2

1 + ∥eN−1,N∥2α2
N−1

+
N−2∑
k=1

{ ∥ek,k+1∥2α2
k − 2∥ek,k+1∥∥ek+1,k+2∥|αk||αk+1|+ ∥ek+1,k+2∥2α2

k+1

}
= ∥e12∥2α2

1 + ∥eN−1,N∥2α2
N−1 +

N−2∑
k=1

(∥ek,k+1∥|αk| − ∥ek+1,k+2∥|αk+1|)2 > 0, (3.6)
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where in the fourth line, we have made use of the norm property, that is, e⊤k,k+1ek+1,k+2 αk αk+1 ≤
∥ek,k+1∥∥ek+1,k+2∥|αk||αk+1|. We remark that the last result in (3.6) is indeed positive. To
clarify this point, let us assume that the |αk| = ∥ek+1,k+2∥

∥ek,k+1∥
|αk+1| for all k = 1, · · · , N − 2.

Then
∑N−2

k=1 (∥ek,k+1∥|αk| − ∥ek+1,k+2∥|αk+1|)2 = 0. However, because of the term ∥e12∥2α2
1 +

∥eN−1,N∥2α2
N−1, the quadratic function α⊤ΛN α is strictly positive which completes the

proof.

Using Theorem 3.4, the Lagrange multipliers can be solved as λ = Λ−1
N (r) b(r, ṙ,u) which

in combination with (3.3) results in the following compact and nonlinear equations of motion

r̈ =
g

ℓ
(r − u) +

1

m
L(λ) r, (3.7)

where L(λ) := [Lij] ∈ R2N×2N is a weighted Laplacian matrix with the blocks Lij ∈ R2×2

for 1 ≤ i, j ≤ N such that Lii := (
∑

k∈N (i) λik) I2, Lij := −λij I2 for j ∈ N (i), and Lij := 02
for j /∈ N (i). Here, I2 and 02 denote the identity and zero matrices of order 2, respec-
tively. We remark that according to the construction procedure, the state manifold for the
interconnected LIP dynamics can be expressed as

M := {(r, ṙ) | ∥eij∥2 = cij, e
⊤
ij ėij = 0, i ∈ V , j ∈ N (i)},

for some cij > 0 which is invariant under the flow of (3.7). In addition, we can show that
M is a 2N + 2-dimensional embedded submanifold of R4N .

Example 3.5. For the case of two agents, the interconnected LIP dynamics can be expressed
as the following nonlinear system

r̈1 =
g

ℓ
(r1 − u1)−

g

2ℓ
(r1 − r2) +

g(r1 − r2)(r1 − r2)
⊤(u1 − u2)

2ℓ ∥r1 − r2∥2
− (r1 − r2)∥ṙ1 − ṙ2∥2

2∥r1 − r2∥2

r̈2 =
g

ℓ
(r2 − u2) +

g

2ℓ
(r1 − r2)−

g(r1 − r2)(r1 − r2)
⊤(u1 − u2)

2ℓ ∥r1 − r2∥2
+
(r1 − r2)∥ṙ1 − ṙ2∥2

2∥r1 − r2∥2
. (3.8)

By defining the augmented state vector x := col(r, ṙ) ∈ R4N , the nonlinear state equation
for the coupled LIP dynamics can be expressed as ẋ = f(x,u), where f : M×R2N → TM
is differentiable and TM denotes the tangent bundle of the manifold M. In addition, the
continuous-time dynamics can be discretized using the Euler approach as follows:

x[k + 1] = x[k] + Ts f(x[k],u[k])

=: F(x[k],u[k]), (3.9)

in which Ts denotes the sampling time and x[k] and u[k] represent the state vector and
control inputs at the time sample k ∈ Z≥0 := {0, 1, · · · }, respectively.



3.3. SUPERVISORY PREDICTIVE CONTROL 39

Figure 3.2: (a) Illustration of the proposed supervisory predictive control. Here, agents
share their actual and reduced-order states with the higher-level supervisory control. The
supervisory control then optimizes for the COM motions subject to the interconnected LIP
dynamics and feasibility conditions. (b) Illustration of the directed cycle to represent the
locomotion pattern of each agent with different continuous-time domains. Snapshot of the
cooperative locomotion highlights different domains for each agent.

3.3 Supervisory Predictive Control

The objective of this section is to develop a supervisory control algorithm, based on the inter-
connected LIP dynamics, MPC, and convex optimization, to effectively plan and coordinate
multi-agent legged robots in real-time.

Models of legged locomotion are hybrid and can be illustrated as directed graphs. In this
representation, continuous-time dynamics are represented by vertices of the graph to de-
scribe the evolution of the system by the Lagrangian dynamics. The edges of the graph
then represent the instantaneous and discrete-time transitions amongst the continuous-time
dynamics to model the possible and abrupt changes in the state vector according to the
rigid impacts of the leg ends with the environment. In this chapter, we consider a general
locomotion (walking) pattern for the quadrupedal agents with start and stop conditions as
a directed graph Gw = (Vw, Ew) (see Fig. 3.2), where the vertices set Vw represents the
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continuous-time domains (e.g., double-, triple-, and quadruple-contact domains) and edges
set Ew ⊂ Vw × Vw denotes the discrete-time transitions (e.g., impacts and take-offs) (see
Fig. 3.2b). We further suppose that there are md ≥ 1 continuous-time domains and each
continuous-time domain consists of ng ≥ 1 grid points (i.e., time samples) (see Fig. 3.2a). In
this chapter, we consider a general aperiodic locomotion pattern. Hence, domains are enu-
merated to show the successive continuous-time domains from start to stop. Consequently,
there can be two distinct domains with the same stance legs (e.g., domains 2 and md − 1 in
Fig. 3.2b). The domain indicator function is then defined as ζ : Z≥0 → {1, 2, . . . ,md} by
ζ(k) := ⌊ k

ng
⌋+1 for 0 ≤ k < md ng and ζ(k) := md for k ≥ md ng to assign the domain index

for every time sample. Here, ⌊·⌋ represents the floor function.

For the feasibility of the interconnected LIP model, we assume that all local control inputs
(i.e., COPs) ui[k] for i ∈ V lie in a time-varying support polygon which is defined as the
convex hull of the contacting points with the ground. That is,

ui[k] ∈ U i
ζ(k), ∀k ∈ Z≥0, ∀i ∈ V , (3.10)

in which U i
ζ(k) ⊂ R2 is the corresponding support polygon for the agent i in the domain ζ(k)

(see Fig. 3.1). In addition, the net GRF acting on the COM of the agent i must be in the
friction cone. This latter condition together with (3.1) and (3.7) can be expressed as the
following nonlinear inequality constraints

cineq(x[k],u[k]) ≤ 0, ∀k ∈ Z≥0. (3.11)

Problem 2 (Real-Time Planning of Agents). Let us consider the locomotion pattern Gw with
a given set of desired footholds encoded in the convex hulls (i.e., support polygons) U i

ζ(k) for
all agents i ∈ V. For a given initial state x0 ∈ M and final state xf ∈ M, the planning
problem consists of finding an optimal augmented control input u[k] in real time that steers
the interconnected LIP dynamics (3.9) from x0 to xf subject to the constraints (3.10) and
(3.11).

Remark 3.6 (Computation of Footholds). We remark that the desired footholds are com-
puted at the beginning of the locomotion and are used during the locomotion to form the
support polygons in Problem 2. One way to compute the desired footholds is as follows.
We can first consider a straight line connecting the initial position of each agent to its final
position in the horizontal plane. We then generate a sequence of footholds along this line
via a proper step length.

To address Problem 2, we consider a supervisory predictive control that has access to the
global positions (i.e., reduced-order sates) of all agents (i.e., ri for i ∈ V) via a direct commu-
nication network [191]. We then extend the event-based MPC approach of Chapter 2—that
generates optimal trajectories for locomotion of a single agent—to address the motion plan-
ning problem for cooperative locomotion of multi-agent robots. In the proposed approach,
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the supervisory predictive control is solved at the event samples, taken at the beginning of
continuous-time domains, to reduce the computational burden of the networked system.

Remark 3.7 (Supervisory MPC). The supervisory predictive control can be either solved
on one of the agents’ onboard computers or all agents’ computers. The first approach
would result in a heterogeneous team with a leader, and the latter one would result in a
homogeneous team. In the first approach, the supervisory MPC is solved at the beginning of
each continuous-time domain for the leader. In contrast, in the second approach, the MPC
is solved at the beginning of continuous-time domains for each agent. Although the first
approach generally requires less computation burden than the second one, our numerical
results show that both of these techniques are computationally tractable for cooperative
locomotion of a team of legged robots with up to four agents. In particular, the computation
time for the supervisory MPC in these techniques takes less than 1 (ms) (see Section 3.5 for
details).

The nonlinear interconnected LIP dynamics in (3.9) are linearized at the event samples to
formulate a convex optimization problem. More specifically, we consider an affine approxi-
mation of (3.9) at the event sample k = l ng for some integer l ≥ 0 to estimate the future
states as follows:

xk+j+1|k = Axk+j|k +Buk+j|k + d, j = 0, 1, · · · , Nh − 1

xk|k = x[k], (3.12)

where Nh = nh ng denotes the control horizon for some positive integer nh ≥ 1, xk+j|k repre-
sents the estimated state of the interconnected LIP network model at time k+j predicted at
time k, and uk+j|k denotes the input of the LIP network (i.e., COPs) at time k+ j computed
at time k. In addition, the Jacobian matrices and affine term are computed from (3.9) and
updated at every event sample according to

A :=
∂F
∂x

(x[k],u[k − 1]) ∈ R4N×4N

B :=
∂F
∂u

(x[k],u[k − 1]) ∈ R4N×2N

d := F(x[k],u[k − 1])−Ax[k]−Bu[k − 1] ∈ R4N . (3.13)

An analogous technique can be used to estimate (3.11) as the following affine inequality

Φxk+j|k +Ψuk+j|k + η ≤ 0, j = 0, 1, · · · , Nh − 1. (3.14)

We then formulate a convex MPC problem over the control horizon Nh to steer (3.12) from



42 CHAPTER 3. COLLABORATIVE LOCOMOTION WITH SUPERVISORY MPC

Figure 3.3: Illustration of 22 DOFs for the full-order model of each robotic agent. The agents
are composed of the 18-DOF quadrupedal robot Vision 60 plus the 4-DOF Kinova arm.

x0 ∈ M to xf ∈ M subject to (3.10) and (3.14), that is,

min
Uk+Nh−1|k

p
(
xk+Nh|k

)
+

Nh−1∑
j=0

L
(
xk+j|k,uk+j|k

)
(3.15)

s.t. Dynamics (3.12) and inequalities (3.10) and (3.14),

where Uk+Nh−1|k := col(uk|k, · · · ,uk+Nh−1|k) ∈ R2NNh . Here, the terminal and stage cost
functions are given by p(xk+Nh|k) := ∥xk+Nh|k−xdes

k+Nh|k∥
2
P and L(xk+j|k,uk+j|k) := ∥xk+j|k−

xdes
k+j|k∥2Q + ∥uk+j|k∥2R, respectively, for some positive definite matrices P ∈ R4N×4N , Q ∈

R4N×4N , and R ∈ R2N×2N . In addition, xdes
k+j|k denotes a desired state trajectory and ∥z∥2P :=

z⊤P z. We remark that the supervisory event-based MPC can be translated into QP. Let
(x⋆

k+j|k,u
⋆
k+j|k) denote the optimal solution over the control horizon. Then the optimal COM

trajectory of the agents over one continuous-time domain (i.e., x⋆
k+j|k for j = 0, · · · , ng −

1) will be utilized as the reference trajectory to be tracked by the low-level distributed
controllers in Section 3.4. The MPC problem will be solved again at the beginning of the
next continuous-time domain.

3.4 Distributed Virtual Constraint Controllers

The objective of this section is to present the low-level distributed controllers to impose
the full-order dynamical models of individual agents to asymptotically track the optimal
reduced-order trajectories prescribed by the supervisory predictive control while having fea-
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sible contact forces. Here, we extend the virtual constraints controller of Chapter 2 for the
development of distributed controllers for multi-agent systems. More specifically, the dis-
tributed low-level controller formulates the I-O linearization problem as a QP that addresses
the feasibility of each agent’s individual GRFs at the contacting leg ends while tracking the
optimal COM trajectories for collaborative locomotion and desired swing leg path of each
agent. We remark that, unlike the supervisory MPC, the distributed low-level controller
only considers the full-order dynamical model of each agent. Hence, it does not require the
full state measurements of the other agents.

Each legged agent is assumed to consist of the 18-DOF quadrupedal robot Vision 60, manu-
factured by Ghost Robotics1, plus a 4-DOF Kinova arm for the locomotion and manipulation
purposes. The total mass of this augmented agent is 35 (kg). The DOFs on Vision 60 are
composed of 6 underactuated DOFs for the absolute position and orientation of the robot
plus 12 actuated DOFs associated with the legs. More specifically, each leg of the robot con-
sists of 3 actuated DOFs for the hip roll, hip pitch, and knee joints. All DOFs of the Kinova
arm are further assumed to be actuated. The detailed view of the joint arrangement and
DOFs of the robot are represented in Fig. 3.3. In our notation for distributed controllers,
the local configuration vector and local control inputs (i.e., joint-level torques) for the agent
i ∈ V are denoted by

qi := col(ptorso,i, ϕtorso,i, qbody,i) ∈ R22 (3.16)
and τi ∈ R16, respectively, where ptorso,i ∈ R3 and ϕtorso,i ∈ R3 describe the absolute position
and orientation of the torso for the agent i with respect to the inertial frame (see Fig. 3.3).
The remaining portion, qbody,i ∈ R16 then represents the body joint variables of the robot
that form the shape of the robot. Finally, let

zi = col(qi, q̇i) ∈ R44 (3.17)

and Fi ∈ R3ℓc,i denote the local full states and contact forces at the leg ends of the agent.
Here, ℓc,i represents the number of contacting legs with the ground.

We now define the following local holonomic outputs to be regulated for the motion control
of the agent i

yi(zi, t) := h0(qi)− hd,i(t), (3.18)
where h0(qi) represents the set of holonomic quantities to be controlled, referred to as the
controlled variables, and hd,i(t) denotes the desired evolution of the controlled variables. The
controlled variables, h0(qi), are chosen as the orientation of the agent (i.e., roll, pitch, and
yaw) together with its COM position, the Cartesian coordinates of the swing leg ends, and
the Cartesian coordinates of the manipulator’s EE in the inertial world frame. The desired
evolution of the COM position in hd,i(t) is defined as a Bézier polynomial [164] that passes
through the discrete and optimal reduced-order trajectory generated by the supervisory
predictive control. In particular, we consider a Bézier polynomial whose coefficients are

1https://www.ghostrobotics.io/
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solved via least-squares at the beginning of each domain such that the polynomial has the
best fit to the optimal COM trajectory of the agent i for the current domain. For the
swing leg ends, hd,i(t) is taken as a Bézier foot trajectory in the task space starting from the
previous foothold with zero velocity and ending at the next preplanned foothold with zero
velocity. Finally, the desired evolution for the EE’s Cartesian coordinates is chosen as the
desired COM trajectory plus a constant vector representing the EE’s position with respect
to the torso.

To compute the local control torques τi, we consider the full-order and floating-base dynamics
of the agent i without considering the interaction forces arising from manipulation. Although
the low-level distributed controllers do not consider the interaction forces amongst the EE
and objects for simplifying the controller synthesis, the full-order simulation models of the
cooperative locomotion in Section 3.5 will consider these interacting forces to illustrate the
validity of this assumption and robustness of the proposed control algorithms. We now
consider the following local dynamics for the controller synthesis

Di(qi) q̈i +Hi(qi, q̇i) = Υiτi + J⊤
c,i(qi)Fi, (3.19)

where Di(qi) ∈ R22×22 denotes the positive definite mass-inertia matrix of the agent i,
Hi(qi, q̇i) ∈ R22 represents the Coriolis, centrifugal, and gravitational forces of the agent
i, and Υi ∈ R22×16 is the input distribution matrix. Furthermore, Jc,i(qi) ∈ R3ℓc,i×22 repre-
sents the contact Jacobian matrix. For future purposes, the local dynamics (3.19) can be
written in the state-space form as follows:

żi =

[
q̇i

−D−1
i Hi

]
+

[
0

D−1
i Υi

]
τi +

[
0

D−1
i J⊤

c,i

]
Fi

=: fi(zi) + gi(zi) τi + wi(zi)Fi. (3.20)

Differentiating the local output yi in (3.18) along the full-order dynamics of the agent i
described in (3.20) results in the following output dynamics

ÿi = LgiLfiyi(zi, t) τi + Lwi
Lfiyi(zi, t)Fi + L2

fi
y(zi, t) +

∂2yi
∂t2

(zi, t)

= −KP yi −KD ẏi, (3.21)

where LgiLfiyi, Lwi
Lfiyi, and L2

fi
yi are Lie derivatives that are used for I-O linearization

[106], and KP and KD are positive definite matrices. Closed-form expressions for the Lie
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derivatives can be expressed as follows:

Lg,iLf,iyi(zi) =
∂h0(qi)

∂qi
D−1

i (qi)Υi

Lw,iLf,iyi(zi) =
∂h0(qi)

∂qi
D−1

i (qi) J
⊤
c,i(qi)

L2
f,iyi(zi) =

∂

∂qi

(
∂h0(qi)

∂qi
q̇i

)
q̇i −

∂h0(qi)

∂qi
D−1

i H(qi, q̇i).

(3.22)

In addition, the local controller assumes a rigid contact model between the stance leg ends
of the agent and the ground. In particular, the acceleration of the stance leg ends is assumed
to be zero which can be expressed as

p̈i = Jc,i(qi) q̈i +
∂

∂q
(Jc,i(qi) q̇i) q̇i = 0, (3.23)

where pi denotes the Cartesian coordinates of the stance leg ends. The condition in (3.23)
along with the local dynamics (3.19) yields the following affine condition in (τi, Fi)

p̈i = LgiLfipi(zi) τi + Lwi
Lfipi(zi)Fi + L2

fi
pi(zi) = 0, (3.24)

where the Lie derivatives can be written as follows:

LgiLfipi(zi) = Jc,i(qi)D
−1
i (qi)Υi

Lwi
Lfipi(zi) = Jc,i(qi)D

−1
i (qi) J

⊤
c,i(qi)

L2
fi
pi(zi) =

∂

∂qi
(Jc,i(qi)q̇i) q̇i − Jc,i(qi)D

−1
i (qi)H(qi, q̇i).

In order to solve for the local torques τi, we are interested in solving for (τi, Fi) subject to
(3.21) and (3.24) such that 1) the contact forces belong to the friction cone (i.e., Fi ∈ FC)
while having feasible torques (i.e., τmin ≤ τ ≤ τmax), and 2) the local torques are minimum
2-norm. Hence, we set up the following set of distributed real-time QPs that can be solved
at 1kHz

min
(τi,Fi,δ)

1

2
∥τi∥2 +

ω

2
∥δ∥2 (3.25)

s.t. LgiLfiyi τi + Lwi
Lfiyi Fi + L2

fi
yi +

∂2yi
∂t2

+ δ = −KP yi −KD ẏi

LgiLfipi τi + Lwi
Lfipi Fi + L2

fi
pi = 0

Fi ∈ FC, τmin ≤ τ ≤ τmax.

Here, δ is a defect variable added to the output dynamics (3.21) to guarantee the existence
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of a feasible solution in two different scenarios. 1) If the coefficient matrix loses rank at
particular configurations, there may not be a pair of control torques and GRFs, i.e., (τi, Fi),
that satisfies (3.21) and (3.24). To tackle this issue, we introduce the defect variable δ to
make the equality constraints feasible. 2) If the torques and GRFs, i.e., (τi, Fi), do not belong
to the admissible sets (i.e., the inequality constraints are violated), the defect variable δ can
again help us to find a feasible solution. To reduce the effect of the defect variable δ on the
output dynamics, we minimize its 2-norm via a large weighting factor in the cost function.
More specifically, the cost function (3.25) tries to minimize a weighted sum of the 2-norms
of the local torques and the defect variable, where ω > 0 is the weighting factor. We remark
that using the defect variable δ, the output dynamics become ÿi +KD ẏi +KP yi = −δ(t),
which is input-to-state stable (ISS) [114]. Hence, if δ(t) remains bounded, the output profile
y(t) will be also bounded. This will be analyzed more in the numerical simulations of Section
3.5. The optimal solutions of these QPs are finally denoted by τi = Γi(t, zi) for i ∈ V and
are employed as local whole-body motion controllers.

3.5 Numerical Simulations

The objective of this section is to numerically verify the effectiveness of the proposed hier-
archical control algorithm for cooperative transportation of objects by a team of composite
robotic agents. We study both reduced- and full-order coupled models of legged agents
to show the stability of locomotion patterns for the closed-loop system. We further inves-
tigate the robustness of the closed-loop system in the presence of unknown payloads and
uncertainty in the ground height profile.

Control Parameters: We consider the cooperative locomotion of two and three agents
with trot gaits including start and stop domains. We have observed that for every sampling
time Ts in [60, 80] (ms) with ng = 4 grids per domain, the proposed control scheme can
stabilize the locomotion patterns. Here, we choose Ts = 80 (ms). The control horizon for the
supervisory predictive control is taken as Nh = nhng = 4 which considers one domain ahead.
The other parameters for the supervisory predictive control are tuned as P = 103 I4N×4N ,
Q = I4N×4N , R = 10−10I2N×2N which stabilize the cooperative motion. We have numerically
observed that for l ∈ [0.35, 0.55] (m), the robots behave safely, and the joint-level torques
remain in an acceptable range. For the purpose of this chapter, we choose l = 0.5 (m). The
friction coefficient is assumed to be µ = 0.6. The supervisory predictive control is solved
in an event-based manner (i.e., at the beginning of each domain), that is approximately
every ngTs = 0.32 seconds. Analogous to Remark 2.1 in Chapter 2, we make use of a sparse
QP structure to effectively solve the MPC (3.15). We can show that the number of decision
variables for the sparse QP are 8NNh and 10NNh during the middle and start/stop domains,
respectively.

Reduced-Order Coupled Models: The evolution of the COM and COP for forward
trot gaits of the individual agents in the interconnected LIP dynamics with N = 2 and
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Figure 3.4: COM and COP trajectories of the individual agents in the interconnected LIP
dynamics (3.9) during forward trot gaits with N = 2 agents ((a) and (b)) and N = 3 agents
((c)-(e)). Here, the optimal control inputs (i.e., COPs) are computed via the supervisory
predictive control (3.15). The sampling time for the supervisory predictive control in (a)-(e)
are assumed to be Ts = 80 (ms).

N = 3 agents is depicted in Fig. 3.4(a)-(b) and Fig. 3.4(c)-(e), respectively. Here we
make use of MATLAB for simulating the interconnected LIP dynamics (3.9) subject to the
holonomic constraints and the supervisory predictive control (3.15). The initial configura-
tions of the LIP models are chosen as r1[0] = (0, 0)⊤(m) and r2[0] = (0, 1)⊤(m) for N = 2
agents. Moreover, the initial positions of the LIP models are taken as r1[0] = (0.2, 1)⊤(m),
r2[0] = (0, 0)⊤(m), and r3[0] = (−0.5,−1)⊤(m) for N = 3 agents. The step length for
N = 2 and N = 3 is chosen as (0.05, 0)(m) and (0.03, 0)(m) in R2, respectively. The target
points are taken as the geometric center of the contact points in the last (i.e., stop) do-
main. Convergence to the target points with different number of agents and after md = 20
continuous-time domains is clear.

Full-Order Coupled Models: Next, we study the full-order complex model of cooperative
locomotion with the proposed hierarchical control algorithm overmd = 50 domains in RaiSim
[105]. Here, we assume massless bars to be carried by the EEs of Vision 60 agents augmented
with Kinova arms. The contact between the bar and the EE of kinova arm is considered as a
point contact. Based on this contact condition, the wrench between the object and EE of the
arm only consists of the interaction forces. The QP arising from the supervisory predictive
control is solved with qpSWIFT [150]. The average computation time of the higher-level
QP on a laptop computer with an Intel(R) Core(TM) i7-10750H CPU 2.60GHz and 16GB
RAM is 0.35 (ms) and 0.59 (ms) for N = 2 and N = 3 agents, respectively. The distributed
and low-level controllers of (3.25) are also solved with qpSWIFT in 1kHz and the weighting
factor ω is chosen as 107.
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Figure 3.5: Evolution of the virtual constraints and torque inputs in RaiSim for stable
forward trot gait with N = 2 agents. Subplots (a) and (c) illustrate the evolution of outputs
whereas subplots (b) and (d) depict the evolution of torque inputs. Here, yx, yy, yz denote
the virtual constraints corresponding to the absolute position (i.e., x, y, and z) of the agent.
In addition, the subscript “rFHip”, “pFHip”, and “FKnee” in the torque plots represent the
roll torque of the front hip, pitch torque of the front hip, and pitch torque of the front knee
for the left side of the robot, respectively.

The numerical simulation results for the stable cooperative locomotion of robots are provided
in Figs. 3.5 and 3.6. Figures 3.5(a)-(d) and Figs. 3.6(a)-(c) illustrate the evolution of
the virtual constraints and torque inputs for the individual agents during collaborative and
forward trot gaits with N = 2 and N = 3 agents, respectively. Here, the speed of cooperative
locomotion for two and three agents is 0.15 (m/s) and 0.1 (m/s). From these figures, we
observe that the control inputs (joint-level torques) for all agents are bounded. In addition,
the outputs (i.e., virtual constraints) remain bounded during the cooperative locomotion.
We remark that Figs. 3.5 and 3.6 depict the first three components of the virtual constraints
(i.e., yx, yy, and yz ) that represents the COM tracking error. In particular, these figures
show that the COM of the full-order dynamical model of each agent tracks the optimal and
reduced-order COM trajectory generated by the supervisory MPC. We also remark that the
range of the control inputs (torques) is bounded between −5 (Nm) and 5 (Nm) by the low-
level nonlinear controller. Finally, the control inputs in Figs. 3.5 and 3.6 depict the motor
torques before the gearbox system. Figure 3.7 depicts the evolution of the 2-norm of the
defect variable δ for the cooperative locomotion of two agents. From this figure, we observe
that δ remains very small.

Robustness Analysis: To demonstrate the robustness of the proposed control algorithm
against uncertainties, we assume that the mass of the bars between the adjacent agents’
EEs is increased to 0.5 (kg) which is unknown for the controller. We further assume that
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Figure 3.6: Plot of the virtual constraints and torque inputs in RaiSim for stable forward
trot gait with N = 3 agents. Subplots (a), (b), and (c) correspond to the agents 1, 2, and
3, respectively. Subplots in the first and second rows correspond to the virtual constraints
and torque inputs of each agent, respectively.
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Figure 3.7: Evolution of the 2-norm of the defect variable δ in RaiSim for N = 2 agents.
Subplots illustrate the evolution for each agent.

additional unknown payloads of 20 (kg), 34(kg), and 48(kg) are cooperatively transported
by two, three, and four agents on their torsos, respectively. Figure 3.8(a)-(d) and Fig.
3.9(a)-(c) depict the evolution of the virtual constraints and torque inputs for N = 2 and
N = 3 agents, respectively. Furthermore, Fig. 3.10(a)-(d) shows the evolution of the virtual
constraints and torque inputs for N = 4 agents. From these figures, it is observed that the
control inputs (i.e., torques) and outputs (i.e., virtual constraints) remain bounded during
the cooperative locomotion with uncertainties. Hence, the proposed control algorithm is
capable of addressing the uncertainty arising from the payload mass. To demonstrate the
effectiveness of the proposed control algorithms based on the interconnected LIP dynamics,
we study the same numerical simulations with the MPC control algorithm of Chapter 2, in
which the MPC is designed for individual robots without considering the interconnected LIP



50 CHAPTER 3. COLLABORATIVE LOCOMOTION WITH SUPERVISORY MPC

Figure 3.8: Evolution of the virtual constraints and torque inputs in RaiSim for robust trot
gait subject to a payload with N = 2 agents. Subplots (a) and (c) illustrate the evolution
of outputs whereas subplots (b) and (d) depict the evolution of torque inputs.

Figure 3.9: Plot of the virtual constraints and torque inputs in RaiSim for robust forward
trot gait subject to a payload with N = 3 agents. Subplots (a), (b), and (c) correspond to
the agents 1, 2, and 3, respectively. Subplots in the first and second rows correspond to the
virtual constraints and torque inputs of each agent, respectively.

dynamics. Snapshots of the simulation results for cooperative locomotion of agents with and
without the proposed approach of this chapter are depicted in Figs. 3.11, 3.12, and 3.13 to
visualize the successes and failures. It is clear that the agents cannot have robustly stable
cooperative locomotion while using their own MPC without considering the interconnected
LIP dynamics.

To show the robustness of the controller against the change in the ground height profile, we
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Figure 3.10: Plot of the virtual constraints and torque inputs in RaiSim for robust trot gait
subject to a payload with N = 4 agents. Subplots (a), (b), (c), and (d) correspond to the
agent 1, 2, 3, and 4, respectively. Subplots in the first and second rows correspond to the
virtual constraints and torque inputs of each agent, respectively.

study the cooperative locomotion with N = 2 and N = 3 agents on uneven terrain. Here,
we assume that the ground height profile changes in a random manner in the discrete set
{±1,±2} (cm). The evolution of the virtual constraints and torque inputs together with
the convergence of the robots to the target points is depicted in Figs. 3.14 and 3.15 for two
and three agents, respectively. From the figures, it is observed that the control inputs and
outputs remain bounded during the cooperative locomotion. Figures 3.16 and 3.17 depict
the snapshots of the cooperative locomotion patterns with the proposed control algorithm.
In addition, Figs. 3.16 and 3.17 compare the robustness and performance of the proposed
control solutions with the individual MPC algorithms that do not consider the interaction
forces for the path planning. Animations of these simulations can be found online2.

3.6 Discussion

The numerical simulations of the reduced- and full-order models show the effectiveness of
the proposed supervisory predictive control algorithm in generating stable cooperative loco-
motion patterns for multi-agent legged robots. The proposed hierarchical control algorithm
developed based on the interconnected LIP dynamics allows robustly stable cooperative lo-
comotion of multi-agent legged robots subject to holonomic constraints whereas the same
legged machines cannot perform stable cooperative locomotion patterns without the pro-
posed algorithm.The objective of this section is to analyze the results and to discuss the
limitations of the proposed control approach.

2https://youtu.be/8G1tniNW7jg

https://youtu.be/8G1tniNW7jg
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Figure 3.11: (a) Snapshots of the unstable cooperative locomotion of 2 agents with the
individual predictive control of Chapter 2 for agents in RaiSim. Here, each agent makes use
of MPC for its own LIP dynamics without considering the interaction forces. (b) Snapshots
of the robustly stable cooperative locomotion of 2 agents with the proposed supervisory
predictive control of this chapter in the presence of a 20 (kg) payload.

Figure 3.12: (a) Snapshots of the unstable cooperative locomotion of 3 agents in RaiSim,
in which each agent makes use of its own MPC without considering the interaction forces
between agents in the interconnected LIP dynamics. (b) Snapshots of the robustly stable
cooperative locomotion of 3 agents with the proposed supervisory predictive control in the
presence of a 32 (kg) payload.

3.6.1 Robustness against Uncertainties

The developed control algorithm enhances the level of robustness of the coupled full-order
dynamical systems against uncertainties arising from the unknown payloads as well as ground
height profile changes. Here, we make use of the number of steps that the robots can take as
metrics to evaluate the performance of the closed-loop system. In particular, success occurs
if the robots can reach the target points in a specified number of domains, denoted by md.
Otherwise, it is a “failure (instability)” (e.g., the robots may fall before reaching the target
point or in a number of domains less than md).

Unknown payloads: For the payload simulations, we consider cooperative locomotion



3.6. DISCUSSION 53

Figure 3.13: (a) Snapshots of the unstable cooperative locomotion of 4 agents in RaiSim, in
which each agent makes use of its own MPC without considering the interaction forces in the
interconnected LIP dynamics. (b) Snapshots of the robustly stable cooperative locomotion
of 4 agents with the proposed supervisory predictive control in the presence of a 48 (kg)
payload.

Figure 3.14: Evolution of virtual constraints and control inputs for locomotion of N = 2
agents over an unknown terrain. Plots show the inputs and outputs for individual agents.

over md = 50 continuous-time domains. The objective is to evaluate the performance of
cooperative locomotion for a team of N ∈ {2, 3, 4} agents. As described in Section 3.5
and Figs. 3.8-3.13, the developed control algorithms allow transporting unknown and much
heavier objects than the maximum payload of a single agent (i.e., 12 (kg)). More specifically,
legged co-robots can cooperatively carry the payloads and arrive at the target positions in
50 domains. In contrast, the same interconnected agents without the supervisory MPC
cannot depart from the initial positions due to the lack of consideration of the interaction
forces at the planner level. Our numerical studies show that the cooperative system with
the supervisory MPC algorithm can transport 20 (kg), 34 (kg), and 48 (kg) with two, three,
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Figure 3.15: Evolution of virtual constraints and control inputs for locomotion of N = 3
agents over an unknown terrain.

Figure 3.16: (a) Snapshots of the unstable cooperative locomotion of 2 agents over an un-
known terrain, where each agent makes use of its own MPC algorithm without considering
the interaction forces. (b) Snapshots of the robustly stable cooperative locomotion of 2
agents over the same terrain with the proposed supervisory predictive control based on the
interconnected LIP dynamics.

and four agents, respectively. In other words, the agents can transport unknown payloads
whose masses are up to 57%, 97%, and 137% of a singles agent’s mass with a team of two,
three, and four legged co-robots.

In addition to the payloads mentioned above on the agents’ torso, we consider payloads
amongst the EEs in Section 3.5. The maximum weight for this load follows the Kinova
arm’s payload limitation (i.e., 0.5 (kg)). If we do not consider this limitation, our numerical
simulations show that the proposed control algorithm can transport payloads of 4.5 (kg), 9
(kg), and 13.5 (kg) between EEs with a team of two, three, and four co-robots, respectively.
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Figure 3.17: (a) Snapshots of the unstable cooperative locomotion of 3 agents, where each
agent makes use of its own MPC algorithm without considering the interaction forces. (b)
Snapshots of the robustly stable cooperative locomotion of 3 agents over an unknown terrain
with the proposed supervisory predictive control.

Varying ground height profiles: For this set of simulations, we study cooperative lo-
comotion on uneven terrains over md = 100 continuous-time domains. The objective is to
evaluate the performance of cooperative locomotion for a team of N ∈ {2, 3} agents. Our
numerical studies show that the proposed control algorithm can result in stable cooperative
locomotion on unknown terrains with ground height changes in the discrete set {±1,±2}
(cm). In particular, we simulated 100 different ground height profiles with discontinuities
within the above set. In all of these simulations, the agents can successfully reach the final
target in the specified number of domains. In contrast, the interconnected system without
the supervisory MPC algorithm always fails on these terrains.

3.6.2 Limitations and Analysis of Results

Linearization of the interconnected LIP dynamics: The interconnected LIP dynamics
in (3.7) are nonlinear. In order to formulate a convex optimal control problem, the super-
visory control algorithm first linearizes the dynamics, and then solves an MPC problem for
the linearized dynamics. Our numerical simulations in Fig. 3.4 depict the behavior of the
nonlinear dynamics subject to the supervisory MPC. From this figure, we observe that the
optimal control problem, formulated for the linearized dynamics, can stabilize the target
points for the original and interconnected LIP dynamics. In particular, the states of the
nonlinear system remain bounded and asymptotically converge to the target points. We also
remark that the supervisory MPC does not use a constant Jacobian linearization for the
entire period of locomotion. Instead, it linearizes the dynamics around the current point at
the beginning of each continuous-time domain. This makes the linearization error zero (i.e.,
resets it) at the beginning of each domain, which in turn reduces the gap between the states
of the linearized and nonlinear dynamics. Furthermore, the adequacy of this linearization
technique is validated in the full-order and complex models of cooperative locomotion. In
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particular, the virtual constraint plots in Figs. 3.5 and 3.6 show that the actual COM po-
sitions of the agents follow the desired COM trajectories, based on the linearized dynamics,
and the error remains bounded. For future research, we will investigate nonlinear MPC
algorithms that can address the path planning problem for the interconnected reduced-order
models without linearization.

Limitations of the reduced-order LIP dynamics: In this chapter, we make use of the
LIP dynamics to form the interconnected reduced-order network. One of the limitations of
the LIP model is that it cannot capture moments about the COM. Hence, the arms model
is not used in the interconnected LIP dynamics as the forces generated by the grippers
due to the holonomic constraints can create moments about the COMs. Consequently,
the holonomic constraints are represented amongst the COMs in the reduced-order model.
However, we remark that the actual holonomic constraints are imposed between the EEs
in the full-order simulations of Section 3.5. In the numerical simulations of Section 3.5,
the arm joints are not locked. However, we define some virtual constraints to control the
EE’s Cartesian coordinates in the task space. The desired trajectory for the EE’s position
is taken as the desired COM trajectory, generated by the supervisory MPC, plus a constant
value that represents the relative motion of the EE with respect to the body. Hence, the
EE’s relative motion with respect to the body becomes almost static. Consequently, the
process of initiating the grasping motion is not addressed in this work. This can limit the
general problem of loco-manipulation during cooperative locomotion of multi-agent robots.
For future research, we will investigate alternative networks of reduced-order models that
can be integrated with simple arm models for manipulation purpose.

The alternative limitation of the LIP model is that it cannot address dynamic locomotion.
Furthermore, the height of the COM is assumed to be constant in the LIP dynamics that
can limit locomotion on rough terrains. This motivates the use of alternative reduced-order
models for future research. However, this may also increase the complexity of the reduced-
order models and the computational burden of the supervisory MPC.

Considerations for the real-world implementation: The proposed controllers of this
work assume that the agents can share their “reduced-order” states for the path planning
purpose. In particular, the higher level of the control algorithm (i.e., supervisory MPC)
is assumed to have access to all the reduced-order states of the agents (i.e., positions of
the COMs). This can be realized via a direct communication network [191]. However, the
low-level controllers for the whole-body motion control are distributed and do not require
full-order state sharing. The preliminary work [73, Chap. 4] shows that the QP-based
low-level controllers can stabilize the locomotion of single-agent legged robots in practice.
We will experimentally evaluate the performance of the proposed controllers for multi-agent
legged robots in future work.

Dynamic locomotion: The numerical simulations of this chapter have shown that the
interconnected LIP dynamics and the event-based supervisory MPC are sufficient to have
robustly stable cooperative locomotion of legged robots. Although state-of-the-art single
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quadrupedal robots have dynamic gaits, the nature of single-agent locomotion and collabo-
rative locomotion of multi-agent systems for cooperative transportation is completely differ-
ent. Hence, the proposed control algorithms are validated for cooperative locomotion with
quasi-static gaits but not dynamic gaits. The developed control approach would likely need
to be altered to address more agile locomotion patterns in complex environments for future
work.

3.7 Summary

This chapter presented a hierarchical nonlinear control algorithm for the real-time planning
and control of legged robots that collaboratively carry objects. We presented an innova-
tive network of reduced-order models subject to holonomic constraints, referred to as the
interconnected LIP dynamics, to address the motion planning problem of collaborative lo-
comotion. The properties of the interconnected LIP dynamics were studied to formulate a
supervisory control as the higher-level planner in the proposed control algorithm. The super-
visory control is formulated as an event-based predictive control to steer the interconnected
LIP dynamics subject to the feasibility of the net GRFs of individual agents. At the lower
level of the proposed control scheme, distributed nonlinear controllers, based on QP and
virtual constraints, were developed to impose the full-order dynamical model of each agent
to asymptotically track the optimal reduced-order trajectories, prescribed by the supervisory
predictive control, while having feasible contact forces at the leg ends. The effectiveness and
robustness of the proposed nonlinear control scheme were demonstrated and investigated via
full-order numerical simulations of a team of two, three, and four collaborative quadrupedal
robots, each with a total of 22 DOFs, while carrying different objects in the presence of
uncertainties.

In the next chapter, we will investigate the design of centralized and distributed predictive
controllers at the higher level of the proposed control scheme with interconnected SRB
dynamics. This work also focused on validating the legged robots’ cooperative locomotion in
numerical simulations and various practical environments subject to unknown disturbances.
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Chapter 4

Centralized and Distributed MPCs of
Cooperative Locomotion

4.1 Introduction

4.1.1 Motivation and Goal

Human-centered communities, including factories, offices, and homes, are typically devel-
oped for humans who are bipedal walkers capable of stepping over gaps and walking up/down
stairs. This motivates the development of collaborative legged robots that can cooperatively
work with each other to assist humans in different aspects of their life, such as labor-intensive
tasks, construction, manufacturing, and assembly. One of the most challenging and essential
problems in deploying collaborative legged robots is cooperative locomotion in complex envi-
ronments, wherein the collaboration between robots is described by holonomic constraints.
Cooperative locomotion with holonomic constraints arises in different applications of legged
robots, such as cooperative transportation of payloads like social insects [116] (see Fig. 4.1),
human-robot locomotion via prosthetic legs and exoskeletons [1, 5, 90, 213], and human-robot
locomotion via guide dog robots [12].

In recent years, important theoretical and technological advances have allowed for the suc-
cessful control of multi-robot systems (MRSs) [191, 209], including collaborative robotic arms
with or without mobility [15, 49, 65, 68, 143, 207], aerial vehicles [38, 41, 119, 122, 134, 137,
146, 156, 184, 187, 202, 211], and ground vehicles [50, 71, 127, 155, 178]. In addition, dis-
tributed control algorithms, including distributed receding horizon control approaches, have
been developed to address the motion planning of MRSs, see e.g., [33, 63, 128, 138]. Some
recent works also address the control and planning of heterogeneous robot teams, including
legged robots [2, 190, 210] but without holonomic constraints amongst the agents. However,
the capabilities of cooperative legged locomotion have not been fully explored. In particular,
collaborating legged robots can be described by inherently unstable dynamical systems with
high dimensionality (i.e., high degrees of freedom (DOFs)), nonlinear, and hybrid nature,
and subject to underactuation and unilateral constraints, as opposed to most of the MRSs
where the state-of-the-art algorithms have been deployed [13]. This complicates the design
of real-time trajectory planning and control approaches, both in centralized and distributed
fashions, to guarantee each agent’s dynamic and robust stability while addressing the curse
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Figure 4.1: Snapshot illustrating holonomically constrained quadrupedal robots locomoting
on gravel while carrying a payload of 4.53 (kg).

Figure 4.2: Overview of the proposed layered control approach with the centralized MPC
algorithm at the high level and distributed nonlinear controllers at the low level for cooper-
ative locomotion.

of dimensionality and respecting the holonomic and unilateral constraints.

Reduced-order (i.e., template) models provide low-dimensional realizations of full-order dy-
namical models of legged robots [80]. They can be integrated with convex optimization
techniques and model predictive control (MPC) approaches to enable gait planning for the
existing legged robots. Some popular reduced-order models include the linear inverted pen-
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dulum (LIP) model [110], centroidal dynamics [147], and single rigid body (SRB) dynamics
[28, 44, 58]. These template models have been used for real-time planning of different single-
agent bipedal [54, 66, 94, 162] and quadrupedal robots [14, 28, 44, 56, 58, 72, 75, 86, 151]. In
this chapter, we aim to answer three fundamental questions in the context of cooperative lo-
comotion of legged robots. 1) How do we develop effective and interconnected reduced-order
models that describe the cooperative locomotion of dynamic legged robots with holonomic
constraints? 2) How do we develop computationally tractable predictive control algorithms
in centralized and distributed manners for real-time planning of interconnected reduced-
order models? In particular, we aim to examine the implementation of centralized and
distributed predictive control algorithms for real-time planning to overcome the limitations
caused by the curse of dimensionality in cooperative locomotion. And 3) How do we map op-
timal reduced-order trajectories to full-order and complex dynamical models of cooperative
locomotion?

In order to address the above questions, this chapter aims to develop mathematical founda-
tions, experimentally implement, and comprehensively study the cooperative locomotion of
two holonomically constrained dynamic legged robots. In particular, the overarching goal of
this chapter is to develop a layered control algorithm for the real-time trajectory planning and
control of dynamic cooperative locomotion for two holonomically constrained legged-robotic
systems. The higher layer of the proposed algorithm considers an innovative reduced-order
model composed of two interconnected SRB dynamics subject to holonomic constraints for
the planning problem. The chapter develops novel centralized and distributed MPC algo-
rithms for the planning purpose of interconnected SRB dynamics (see Figs. 4.2 and 4.3).
These MPC algorithms address the real-time planning at the higher layer of the control hi-
erarchy subject to the interaction terms and feasibility of the ground reaction forces (GRFs).
The optimal reduced-order trajectories and GRFs, generated by the high-level MPCs, are
then mapped to the full-order and complex dynamics via distributed nonlinear controllers
at the low level for the whole-body motion control. The low-level nonlinear controllers are
developed based on quadratic programming (QP) and input-output (I-O) linearization. The
efficacy of the proposed layered control approach is validated via extensive experiments for
robustly stable locomotion of two holonomically constrained A1 quadrupedal robots that
cooperatively transport unknown payloads on different terrains and in the presence of dis-
turbances (see Fig. 4.1). A comprehensive numerical analysis of the performance of the
proposed centralized and distributed MPC algorithms is finally presented.

4.1.2 Related Work

Holonomically constrained MRSs, including fixed-based collaborative robotic arms [49, 207],
aerial vehicles with payloads [137, 146, 187, 202], and ground vehicles [71, 127, 155, 178]
have gained significant attention during the last years. Moreover, MRSs augmented with
robotic arms have been studied for more complex cooperative tasks [15, 38, 65, 68, 119,
211]. In contrast to the above-mentioned robotic systems, collaborative legged robots are
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Figure 4.3: Overview of the proposed layered control approach with the distributed MPC
algorithms at the high level and distributed nonlinear controllers at the low level for coop-
erative locomotion.

dynamical systems with high dimensionality, unilateral constraints, and hybrid nature that
add further complexity to synthesizing planning and control algorithms. In addition, the
strong interacting wrenches (forces/torques) between the agents, arising from holonomic
constraints, must be carefully addressed to result in a robustly stable planner for cooperative
legged locomotion. As a result, collaborative legged locomotion has not been studied to the
same degree as other robotic systems. This paper, there, marks the first experimental
implementation in this context.

In the context of legged robots, the trajectory planning and control approaches can be sec-
tioned into two categories: the ones using the full-order models and the others using the
reduced-order models. Hybrid systems theory plays an important role in understanding and
analyzing full-order dynamical models of legged locomotion [84, 98, 99, 104, 107, 141, 159,
180, 206]. Advanced nonlinear control algorithms such as hybrid reduction [18], controlled
symmetries [179], transverse linearization [130], and hybrid zero dynamics (HZD) [19, 205]
address the hybrid nature of full-order locomotion models. The HZD approach regulates some
output functions, referred to as virtual constraints, with I-O linearization techniques [106] to
coordinate the robot’s links within a stride. This method can systematically address under-
actuation and its effectiveness has been validated for stable locomotion of different bipedal
[42, 51, 103, 131, 183] and quadrupedal robots [74, 126] as well as powered prosthetic legs
[90, 213]. The full-order gait planning is typically formulated as a nonlinear programming
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(NLP) problem that can be addressed with existing NLP tools and direct collocation tech-
niques [39, 103, 113, 154, 157]. Although the direct-collocation-based approaches generate
optimal trajectories for full-order models of legged robots effectively, they cannot address
real-time trajectory optimization of cooperative legged robots in complex environments.

In contrast to full-order models of legged locomotion, template models present reduced-
order representations of legged robots that significantly reduce the computational burden
and complexity associated with trajectory optimization. Various template models, including
LIP [110], SRB [28, 44, 58], and centroidal dynamics [147], have been successfully integrated
with the MPC framework for the real-time planning of bipedal and quadrupedal robots
[14, 28, 44, 54, 56, 58, 66, 75, 86, 94, 151, 162]. The main challenge with using template
models is bridging the gap between reduced- and full-order models of locomotion arising
from abstraction (e.g., ignoring the legs’ dynamics in template models). In particular, one
needs to translate the optimal reduced-order trajectories to the full-order joint positions and
torques. Different hierarchical control algorithms have been proposed in the literature to
close this gap, in which a whole-body motion controller is utilized at the low level to map
the optimal trajectories, generated by the higher-level MPC, to the full-order dynamics. For
instance, [44, 58] have used Jacobian mapping, [14, 116] have used HZD-based controllers,
[151] has used robust MPC integrated with reinforcement learning, [76] has used data-driven
template models, and [25, 72] have used joint space whole-body controllers.

Despite the success of the above methods on individual robots, it is unknown what reduced-
order models can represent multi-agent-legged robots’ dynamic and cooperative transporta-
tion effectively. In addition, it is unclear if the existing MPC techniques can address the
real-time trajectory planning for the reduced-order models of cooperative locomotion with
increased dimensionality. Moreover, it is unclear how the centralized MPC algorithms for
such complex models can be decomposed into lower-dimensional distributed MPC algorithms
considering the strong interaction terms. Our previous work in Chapter 3 employed an in-
terconnected network of LIP models with event-based MPC (introduced in Chapter 2) as
a trajectory planner for cooperative locomotion. The simple nature of the LIP model and
event-based MPC reduced the computational burden by running the MPC only at the be-
ginning of the continuous-time domains rather than every time sample. However, using the
LIP model prohibits us from capturing the interaction torques due to the assumption of a
concentrated point mass at the center of mass (COM). This model also restricts the genera-
tion of dynamic cooperative gaits because the center of pressure (COP) must always remain
within the support polygon, limiting the system’s full potential. Moreover, the proposed
event-based MPC was formulated only in a centralized manner and validated on numerical
simulations and without experimental validations. In the current work, we aim to develop a
new framework to allow more dynamic cooperative gaits while solving MPC problems faster
in both centralized and distributed manners and experimentally validating the approach on
two dynamic quadrupedal robots.
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4.1.3 Objectives and Contributions

The objectives and key contributions of this chapter are as follows:

1) The chapter presents an innovative network of two holonomically constrained SRB dy-
namics as an effective reduced-order model to capture the interaction wrenches between
agents while dynamically stabilizing the motion during cooperative locomotion. It is nu-
merically shown that the MPC algorithms utilizing a nominal SRB model cannot stabilize
cooperative locomotion.

2) A layered control approach is proposed to robustly stabilize cooperative locomotion of
holonomically constrained quadrupedal robots. At the high level of the control hierar-
chy, two different MPC algorithms, based on QP, are proposed: centralized MPC and
distributed MPC (see Figs. 4.2 and 4.3). The centralized MPC algorithm solves for the
optimal state trajectory, GRFs, and interaction wrenches for the interconnected SRB dy-
namics. The distributed MPC algorithm assumes two local QPs that share their optimal
solutions with a one-step communication delay. The distributed MPCs solve for the local
states, local GRFs, and estimated local interaction wrenches according to an agreement
protocol in the cost function.

3) At the low level of the proposed control architecture, distributed and full-order nonlinear
controllers are presented for the whole-body motion control of agents. The distributed
nonlinear controllers are developed based on QP and virtual constraints to impose the
full-order dynamics to track the prescribed and optimal reduced-order trajectories and
GRFs, generated by the high-level MPC (centralized or distributed).

4) Extensive numerical simulations are presented to evaluate the performance of the cooper-
ative locomotion of two holonomically constrained A1 robots with different payloads on
different rough terrains and in the presence of external force disturbances. A compara-
tive analysis of the closed-loop systems with centralized and distributed MPC algorithms
with more than 1000 randomly generated rough terrain profiles and external forces is
presented. It is shown that the proposed distributed MPC algorithm has a performance
similar to that of the centralized one, while the solve time is reduced by 70%. In addition,
it is shown that the proposed centralized and distributed MPCs can drastically improve
the robust stability of cooperative locomotion subject to a wide range of uncertainties,
while the nominal MPCs cannot stabilize it.

5) The effectiveness of the proposed layered control algorithms (centralized and distributed)
is verified with an extensive set of experiments for the blind and cooperative locomotion
of two holonomically constrained A1 quadrupedal robots, each with 18 DOFs. The exper-
iments include cooperative locomotion with different and unknown payloads on different
terrains (covered with blocks, gravel, mulch, and slippery surfaces) and in the presence
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of external pushes and tethered pulling. Detailed robustness analysis is presented to ex-
perimentally evaluate the performance of the closed-loop system against the violations of
assumptions made for the synthesis of the controller.

4.1.4 Outline

The chapter is organized as follows. Section 4.2 develops interconnected SRB models as a
reduced-order model of cooperative locomotion. Section 4.3 formulates centralized and dis-
tributed MPC-based trajectory planning algorithms with the proposed reduced-order model.
Section 4.4 presents distributed nonlinear controllers for the whole-body motion control. Sec-
tion 4.5 provides a detailed and extensive set of numerical and experimental validations of
the proposed layer control algorithm. In Section 4.6, we discuss the results and compare the
performance of the centralized and distributed MPC algorithms. Section 4.7 finally presents
some concluding remarks and future research directions.

4.2 Reduced-Order Model of Cooperative Legged Lo-
comotion

This section aims to address the reduced-order models that describe the cooperative loco-
motion of two holonomically constrained quadrupedal robots. The section assumes a rigid
bar connected via ball joints to two points on the robots for carrying objects (see Fig. 4.1).
These two points will be referred to as the interaction points. This assumption simplifies the
analysis and results in a holonomic constraint, stating that the Euclidean distance between
the interaction points is constant. However, the analysis of this section can be extended to
more sophisticated connections, such as restricting the pitch or roll angles of the bar/load.
In Section 4.6.4, we will experimentally show the robustness of the developed algorithms
subject to these additional constraints.

In our notation, the subscript i ∈ I := {1, 2} represents the ith robot. We assume that {Bi}
is the local frame rigidly attached to the body of the agent i with its origin on the COM.
The orientation of the frame {Bi} with respect to the inertial world frame {O} is denoted
by Ri ∈ SO(3), where SO(3) := {R ∈ R3×3 |R⊤R = I, det(R) = 1} is the special orthogonal
group of order 3, and I represents the identity matrix. The Cartesian coordinates of the COM
of agent i with respect to {O} are also represented by rci := col(xci, yci, zci) ∈ R3, where
“col” denotes the column operator. Moreover, ωBi

i ∈ R3 represents the angular velocity of
agent i expressed in the body frame {Bi}. We assume that pi ∈ R3 for i ∈ I represents
Cartesian coordinates of the interaction points with respect to the inertial frame {O}, that
is,

pi = rci +Ri d
Bi
i , (4.1)
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Figure 4.4: Illustration of the interconnected SRB models for the cooperative locomotion of
two quadrupedal robots.

where dBi
i ∈ R3 is a constant vector denoting the coordinates of the interaction points in the

body frame {Bi}. For future purposes, we define ηi := Ri d
Bi
i (see Fig. 4.4). We remark

that the holonomic constraint between two agents can be described as a constraint on the
Euclidean distance between the interaction points as follows:

ψ (rc1, rc2, R1, R2) :=
1

2
∥p1 − p2∥2 = ψ0, (4.2)

in which ∥ · ∥ denotes the 2-norm, and ψ0 is a constant number, determined based on the
length of the bar.

According to the principle of virtual work, one can consider (p1−p2)λ ∈ R3 as the interaction
force applied to agent 1 for some Lagrange multiplier λ ∈ R to be determined later (see again
Fig. 4.4). Consequently, the net external wrench applied to agent i ∈ I can be expressed as
follows: [

fnet
i

τnet
i

]
=

∑
ℓ∈Ci

[
I
r̂ℓi

]
uℓi +

[
I
η̂i

]
(pi − pj)λ, (4.3)

where j ̸= i ∈ I denotes the index of the other agent and the hat map (̂·) : R3 → so(3)
represents the skew-symmetric operator with the property x̂ y = x × y for all x, y ∈ R3.
In (4.3), the superscript ℓ ∈ Ci denotes the index of the contacting legs with the ground,
Ci represents the set of contacting legs for the agent i, and uℓi ∈ R3 denotes the GRF at
the contacting leg ℓ for the agent i. In addition, rℓi ∈ R3 represents the position of each
contacting leg with respect to the COM of agent i, that is, rℓi = rℓfoot,i − rci, where rℓfoot,i is
the position of the contacting foot ℓ of the agent i with respect to the world frame {O}.

By taking the local state variables for the agent i ∈ I as

xi := col
(
rci, ṙci, vec(Ri), ω

Bi
i

)
∈ R18, (4.4)
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the global state variables can be defined as

x := col (x1,x2) , (4.5)

where “vec” represents the vectorization operator. Similarly, the global control inputs can
be defined as u := col(u1,u2), where ui denotes the local control inputs (i.e., GRFs) for the
agent i, that is,

ui := col
{
uℓi | ℓ ∈ Ci

}
. (4.6)

By differentiating the holonomic constraint (4.2), one can get

ψ̇(x) = (p1 − p2)
⊤ (ṗ1 − ṗ2) = 0, (4.7)

and hence, the state manifold for the interconnected SRB dynamics can be expressed as

X :=
{
x ∈ R36|Ri ∈ SO(3), i ∈ I, ψ(x) = ψ0, ψ̇(x) = 0

}
.

Finally, the interconnected SRB dynamics can be expressed as

ẋ = f(x,u, λ) :=



ṙc1
fnet
1

m
− g

vec(R1 ω̂
B1
1 )

I−1
(
R⊤

1 τ
net
1 − ω̂B1

1 I ωB1
1

)
ṙc2

fnet
2

m
− g

vec(R2 ω̂
B2
2 )

I−1
(
R⊤

2 τ
net
2 − ω̂B2

2 I ωB2
2

)


, (4.8)

where m and I ∈ R3×3 denote the total mass and the fixed moment of inertia in the body
frame for each agent, respectively, and g represents the constant gravitational vector. We
remark that the kinematics relations in (4.8) are expressed as Ṙi = Ri ω̂

Bi
i for i ∈ I. The

rotational dynamics can be further expressed as Euler’s equation I ω̇Bi
i + ω̂Bi

i I ωBi
i = R⊤

i τ
net
i .

We also note that in (4.8), f : X × U × R → TX is smooth with

U := FC × · · · × FC︸ ︷︷ ︸
mu−times

⊂ R3mu (4.9)

being the admissible set of control inputs, where mu denotes the total number of contacting
legs with the ground (e.g., mu = 4 for cooperative trot), FC := {col(fx, fy, fz) | fz > 0, |fx| ≤
µ√
2
fz, |fy| ≤ µ√

2
fz} represents the linearized friction cone for some friction coefficient µ, and

TX is the tangent bundle of the state manifold X .
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In order to make the manifold X invariant under the flow of (4.8), one would need to choose
the Lagrange multiplier λ to satisfy the holonomic constraint. In particular, differentiating
(4.7) according to (4.1) and Ṙi = Ri ω̂

Bi
i results in

ψ̈(x,u, λ) = (p1 − p2)
⊤ (p̈1 − p̈2) + ∥ṗ1 − ṗ2∥2

= (p1 − p2)
⊤
{
r̈c1 − r̈c2 +R1

(
ω̂B1
1

)2

dB1
1 −R2

(
ω̂B2
2

)2

dB2
2

+R1
̂̇ωB1
1 dB1

1 −R2
̂̇ωB2
2 dB2

2

}
+ ∥ṗ1 − ṗ2∥2 = 0. (4.10)

This latter equation, together with the equations of motion (4.8) and (4.3), results in λ
being a function of (x,u). However, replacing this nonlinear expression for λ in (4.8) can
make the original dynamics (4.8) more nonlinear and complex. Furthermore, this can nu-
merically complicate the Jacobian linearization of ẋ = f(x,u, λ(x,u)) when formulating
the trajectory planning problem as a convex MPC in Section 4.3. Alternatively, we pursue
a computationally effective approach by considering ẋ = f(x,u, λ) subject to the equality
constraint ψ̈(x,u, λ) = 0 within the optimal control problem formulation. More specifi-
cally, the decision variables for the MPC include the trajectories of (x,u, λ) over the control
horizon, and the MPC will satisfy the equality constraint. The other advantage of this tech-
nique is that the interconnected SRB dynamics can be integrated with the variational-based
approach of [44, 58] to linearize and then discretize the dynamics such that the rotation
matrices Ri, i ∈ I evolve on SO(3).

To clarify this latter point, following [58], we introduce a new set of local state variables for
the agent i ∈ I with the abuse of notation as

xi := col
(
rci, ṙci, ξi, ω

Bi
i

)
∈ R12. (4.11)

Here, ξi ∈ R3 is a vector used to approximate the rotation matrix Ri around an operating
point Ri,op as follows:

Ri = Ri,op exp(ξ̂i) ≈ Ri,op

(
I+ ξ̂i

)
. (4.12)

The approach of [58] has linearized the SRB dynamics subject to GRFs without interaction
forces. Hence, one must extend the technique to write down the Taylor series expansion for
the additional wrench terms in (4.3) arising from the interaction. This results in a discrete
and linear time-varying (LTV) system to predict the future states as follows:

xk+t+1|t = Aop xk+t|t +Bop uk+t|t +Cop λk+t|t + dop, (4.13)

for all k = 0, 1, · · · , N−1 and with the initial condition xt|t = xt. Here, x ∈ R24 denotes the
global state variables, N represents the control horizon, and (xk+t|t,uk+t|t, λk+t|t) denotes the
tuple of the predicted global states, global inputs (i.e., GRFs), and Lagrange multiplier at
time k + t computed at time t. Furthermore, Aop ∈ R24×24, Bop ∈ R24×3mu , Cop ∈ R24, and
dop ∈ R24 are the Jacobian matrices and offset term evaluated around the current operating
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point (xt,ut−1, λt−1).

The approximation in (4.12) only ensures that the rotation matrices evolve on SO(3). To
guarantee that the state predictions in (4.13) belong to the tangent space of the state man-
ifold at the operating point (i.e., TopX ), we first define the following equality constraint

Ψ(x,u, λ) :=

ψ(x)− ψ0

ψ̇(x)

ψ̈(x,u, λ)

 = 0. (4.14)

Then, analogous to the technique used for the linearization of the interconnected dynamics,
the equality constraint (4.14) can be approximated around the operating point as follows:

Eop xk+t|t + Fop uk+t|t +Gop λk+t|t + hop = 0 (4.15)

to ensure that Ψ(xk+t|t,uk+t|t, λk+t|t) ≡ 0. Here, Eop ∈ R3×24, Fop ∈ R3×3mu , Gop ∈ R3, and
hop ∈ R3 are proper matrices and vectors that can be either computed via the approach of
[58] or symbolic calculus.
Remark 4.1. As the nature of the holonomic constraints between the agents becomes more
complex, the procedure for obtaining the corresponding prediction model and equality con-
straints becomes computationally expensive. However, our experimental results in Section
4.5 will indicate that the proposed layered control approach, developed based on the as-
sumption of holonomic constraints in (4.2), can robustly stabilize cooperative locomotion
subject to uncertainties in the constraints (e.g., limiting the pitch angles of the ball joints).
In addition, Section 4.5.2 will show that ignoring the holonomic constraints (4.2) for the
reduced-order model and trajectory planner can destabilize cooperative locomotion.

4.3 MPC-Based Trajectory Planning

This section aims to formulate the real-time trajectory planning problem for cooperative
locomotion as centralized and distributed MPC algorithms.

4.3.1 Centralized MPC

We will consider a locomotion pattern for the agents, described by the directed cycle G(V , E),
where V and E ⊂ V × V represent the sets of vertices and edges, respectively. The vertices
denote the continuous-time domains of locomotion, and the edges represent the discrete-time
transitions between the continuous-time domains.
Assumption 4.2. At every time sample t, the higher-level MPC is aware of the current
stance legs, assuming that the stance leg configuration does not change throughout the
prediction horizon.



70 CHAPTER 4. CENTRALIZED AND DISTRIBUTED MPCS OF COOPERATIVE LOCOMOTION

Remark 4.3. Assumption 4.2 is not restrictive and simplifies the optimal control problem
of (4.13) subject to (4.15) over the control horizon. Otherwise, one would need to consider
the optimal control problem for a piecewise affine (PWA) system [29, Chap. 16] subject to
different switching times.

We are now in a position to present the following real-time centralized MPC algorithm for
the cooperative locomotion

min
(x(·),u(·),λ(·))

p
(
xt+N |t

)
+

N−1∑
k=0

L
(
xk+t|t,uk+t|t, λk+t|t

)
s.t. Prediction model (4.13)

Equality constraints (4.15)
uk+t|t ∈ U , k = 0, 1, · · · , N − 1, (4.16)

where the equality constraints for the MPC arise from a) the prediction model (4.13) to
address the interconnected SRB dynamics with the initial condition of xt|t = xt, and b)
the holonomic constraints (4.15) (see Fig. 4.2). Here, the centralized MPC solves for the
optimal trajectories of the global states, global inputs, and the Lagrange multiplier encoded
in (x(·),u(·), λ(·)) to retain the sparsity structure of [201], where x(·) := col{xk+t|t | k =
1, · · · , N}, u(·) := col{uk+t|t | k = 0, 1, · · · , N − 1}, and λ(·) := col{λk+t|t | k = 0, 1, · · · , N −
1}. The terminal and stage cost functions in (4.16) are then taken as p(xt+N |t) := ∥xt+N |t −
xdes
t+N |t∥2P and L(xk+t|t,uk+t|t, λk+t|t) := ∥xk+t|t −xdes

k+t|t∥2Q + ∥uk+t|t∥2Ru
+ ∥λk+t|t∥2Rλ

for some
desired trajectory xdes(·) and some positive definite matrices Q and Ru, and a positive scalar
Rλ. Finally, the inequality constraints of (4.16) represent the feasibility of the GRFs for two
agents.

Remark 4.4. The MPC in (4.16) addresses the trajectory planning problem over the current
continuous-time domain. In particular, we do not include the following domain for prediction
purposes. This is mainly due to the fact that the actual footholds for the following domain
are not known a priori. More specifically, we employ Raibert’s heuristic [165, Eq. (2.4),
pp. 46] to plan for the upcoming footholds of each agent. Assuming pre-planned footholds,
one can extend the MPC to include other domains. However, our experimental results in
Section 4.5 suggest that planning over the current domain is sufficient for robustly stable
cooperative locomotion. This is in agreement with most of the existing MPC approaches
for single SRB dynamics. We also remark that the centralized MPC has (25 + 3mu)N
decision variables, where mu represents the total number of contacting legs with the ground.
Finally, the MPC problem (4.16) solves for the optimal trajectories of the state variables
x⋆(·), control inputs u⋆(·), and Lagrange multiplier λ⋆(·). However, the high-level MPC
only applies the first element of the optimal state and control sequence, i.e., (x⋆

t+1|t,u
⋆
t|t), to

the low-level nonlinear controller for tracking while discarding λ⋆t|t (see Fig. 4.2).
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4.3.2 Distributed MPC

This section aims to develop a network of distributed MPCs with a smaller number of
decision variables that plan for the cooperative locomotion of two holonomically constrained
quadrupedal robots. From (4.13), the local dynamics of the agent i ∈ I can be expressed as
follows:

xi,k+t+1|t = Aop,ii xi,k+t|t +Bop,ii ui,k+t|t +Cop,i λk+t|t + dop,i +∆i

(
xj,k+t|t,uj,k+t|t

)
, (4.17)

for j ̸= i ∈ I, where Aop,ii,Aop,ij ∈ R12×12, Bop,ii,Bop,ij ∈ R12× 3
2
mu , Cop,i ∈ R12, and

dop,i ∈ R12 denote the corresponding partitioning of (Aop,Bop,Cop,dop). In addition,

∆i

(
xj,k+t|t,uj,k+t|t

)
:= Aop,ij xj,k+t|t +Bop,ij uj,k+t|t (4.18)

represents the interaction term on the agent i. Similarly, the equality constraints (4.15) can
be rewritten as follows:

Eop,i xi,k+t|t + Fop,i ui,k+t|t +Gopλk+t|t + hop +Ωi

(
xj,k+t|t,uj,k+t|t

)
= 0, (4.19)

in which Eop,i ∈ R3×12 and Fop,i ∈ R3× 3
2
mu are the corresponding columns of (Eop,Fop), and

Ωi

(
xj,k+t|t,uj,k+t|t

)
:= Eop,j xj,k+t|t +Gop,j uj,k+t|t

for j ̸= i. Motivated by the inherent limitation of the distributed QP problems, one would
need to estimate the interaction terms ∆i and Ωi, i ∈ I to solve for local QPs. For this
purpose, we make the following assumption.

Assumption 4.5 (One-Step Communication Protocol). At every time sample t, each local
MPC has access to the optimal solution of the other local MPC at time t−1. More specifically,
the local MPCs share their previous optimal solutions over the network.

From Assumption 4.5, we can estimate the interaction terms ∆i and Ωi in (4.17) and (4.19)
using the previous optimal solutions, that is,

∆i

(
xj,k+t|t,uj,k+t|t

)
≈ ∆i

(
x⋆
j,k+t|t−1,u

⋆
j,k+t|t−1

)
Ωi

(
xj,k+t|t,uj,k+t|t

)
≈ Ωi

(
x⋆
j,k+t|t−1,u

⋆
j,k+t|t−1

)
, (4.20)

in which x⋆
j,k+t|t−1 and u⋆

j,k+t|t−1 denote the optimal solution from the local QP j for time
k + t computed at time t − 1 for k = 0, 1, · · · , N − 1. We remark that as the QP j does
not plan for uN−1+t|t−1, we let u⋆

N−1+t|t−1 = 0. The assumption in (4.20) estimates the
interaction terms in the local dynamics and equality constraints based on the optimal values
from the local QP j at the previous time sample. With this assumption, the local MPC
i needs to optimally solve for its own local state trajectory xi(·), local control trajectory
ui(·), and the Lagrange multiplier trajectory λ(·). However, as the Lagrange multiplier λ is



72 CHAPTER 4. CENTRALIZED AND DISTRIBUTED MPCS OF COOPERATIVE LOCOMOTION

common between the decision variables of two local MPCs, they need to reach a consensus
over time for the optimal λ value.

To address the consensus problem, we develop an agreement protocol as follows. The cost
function of the centralized MPC (4.16) can be written as the sum of individual terms, i.e.,

J1 (x1(·),u1(·)) + J2 (x2(·),u2(·)) + Jλ (λ(·)) . (4.21)

We assume that each local QP estimates its own trajectory of the Lagrange multiplier,
denoted by λi(·). We then propose the following real-time distributed MPC for agent i ∈ I

min
(xi(·),ui(·),λi(·))

Ji (xi(·),ui(·)) + Jλ (λi(·)) + w
N−1∑
k=0

∥λi,k+t|t − aii λ
⋆
i,k+t|t−1 − aij λ

⋆
j,k+t|t−1∥2

+ β⋆⊤
j,t−1 Kj,i

[
xi(·)
ui(·)

]
+ β⋆⊤

j,t−1 Kj,λ λi(·)

s.t. Local prediction model (4.17) with (4.20)
Local equality constraints (4.19) with (4.20)
ui,k+t|t ∈ U i, k = 0, 1, · · · , N − 1, (4.22)

where w is a positive weighting factor added to introduce a new term in the local cost
function to address the agreement protocol. In particular, the agreement term penalizes the
difference between the local predicted values of λi,k+t|t and the average of the previously
computed optimal values λ⋆i,k+t|t−1 and λ⋆j,k+t|t−1 by the local MPCs i and j at time t − 1.
Here, aii and aij are the weighting factors for averaging with the property aii, aij ∈ [0, 1] and
aii + aij = 1, where i ̸= j ∈ I. The last two terms in the cost functions will be described
shortly. The distributed MPC (4.22) has two sets of equality constraints arising from a) the
local dynamics (4.17), and b) the holonomic constraint (4.19) with the assumption (4.20).

The proposed local MPC for the agent i does not consider the local dynamics of the other
agent (i.e., agent j). Instead, motivated by our previous work [112], it uses the Karush–
Kuhn–Tucker (KKT) Lagrange multipliers that correspond to the equality constraint arising
from the local dynamics of the agent j in the QP j at time t− 1. This set of KKT Lagrange
multipliers is denoted by β⋆

j,t−1. In addition, Kj,i and Kj,λ represent the sensitivity (i.e.,
gradient) of the local dynamics j with respect to the local variables (xi(·),ui(·)) and λ(·),
respectively. In particular, Kj,i can be computed in a straightforward manner by taking the
gradient of the local interaction terms ∆j with respect to (xi,k+t|t,ui,k+t|t) over the entire
control horizon and stacking the results together, that is,

Kj,i :=
∂ col{∆j(xi,k+t|t,ui,k+t|t) | k = 0, 1, · · · , N − 1}

∂(xi(·),ui(·))
.

An analogous approach can be used to compute the sensitivity matrix Kj,λ. We then add the
last two linear terms to the cost function of the local MPC (4.22). Our previous work [112,



4.4. DISTRIBUTED NONLINEAR CONTROLLERS FOR FULL-ORDER MODELS 73

Theorem 1] has shown that the inclusion of the KKT Lagrange multipliers β⋆
j,t−1 together

with the sensitivity matrices (Kj,i,Kj,λ) in the cost function can result in a set of local KKT
conditions that have a similar structure to that of the KKT equations for the centralized
problem. Finally, U i in (4.22) represents the local feasibility set for the GRFs (i.e., inputs).

Remark 4.6. We remark that local MPCs in the proposed structure (4.22) share their
optimal local state trajectory x⋆

i (·), local control trajectory u⋆
i (·), local estimates of the

Lagrange multiplier trajectory λ⋆i (·), and the KKT Lagrange multipliers corresponding to
the local dynamics in the QP structure β⋆

i with the other agent and according to the one-step
communication delay protocol (see Fig. 4.3). Finally, the number of decision variables for
each local MPC becomes (13 + 3

2
mu)N . Section 4.6.2 will numerically study and show the

consensus problem of the estimated Lagrange multipliers.

4.4 Distributed Nonlinear Controllers for Full-Order
Models

The objective of this section is to present the low-level and distributed nonlinear controllers
for the whole-body motion control of each agent. The full-order and floating-based model of
the agent i can be described by the Euler-Lagrange equations and principle of virtual work
as follows:

D(qi) q̈i +H(qi, q̇i) = Υ τi +
∑
ℓ∈Ci

J⊤
ℓ (qi) f

ℓ
i + J⊤

int(qi) (pi − pj)λ, (4.23)

where qi ∈ Q ⊂ Rnq represents the generalized coordinates of the robot i, Q and nq denote
the configuration space and number of DOFs, respectively, τi ∈ T ⊂ Rnτ represents the
joint-level torques at the actuated joints, T is a closed and convex set of admissible torques,
and Ci represents the set of contacting legs with the environment. In addition, f ℓ

i denotes the
GRF at the contacting leg ℓ ∈ Ci of the full-order model for the agent i. We remark that the
GRF at the contacting leg ℓ ∈ Ci of the reduced-order model for the agent i was denoted by
uℓi in Section 4.2. This is due to the possible gap between the reduced- and full-order models
arsing from abstraction (i.e., ignoring legs’ dynamics). Moreover, D(qi) ∈ Rnq×nq denotes
the positive definite mass-inertia matrix, H(qi, q̇i) ∈ Rnq represents the Coriolis, centrifugal,
and gravitational terms, Υ ∈ Rnq×nτ is the input distribution matrix, Jℓ(qi) denotes the
contact Jacobin matrix at the leg ℓ, Jint(qi) represents the Jacobian of the interaction point
pi, and (pi − pj)λ denotes the interaction force between the two agents as described in the
reduced-order model of Section 4.2. The local and full-order state variables for the agent i is
defined as zi := col(qi, q̇i) ∈ Q×Rnq . For future purposes, the vector of GRFs for the agent
i is shown by fi := col{f ℓ

i | ℓ ∈ Ci}.

For the whole-body motion control of each agent, we develop a QP-based nonlinear controller
that maps the desired optimal trajectories and GRFs, generated by the high-level MPC, to
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the full-order model. For this purpose, we consider the following time-varying and holonomic
output functions, referred to as virtual constraints [74], to be regulated:

yi(t, zi) := ya(qi)− ydes(t), (4.24)

where ya(qi) represents a set of controlled variables and ydes(t) denotes the desired evolution
of the controlled variables in terms of a time-based phasing variable. In this chapter, the
controlled variables include the Cartesian coordinates of the robot’s COM, the absolute
orientation of the robot’s body (i.e., Euler angles), and Cartesian coordinates of the swing
leg ends. The desired evolution of the COM position and Euler angles are generated by
the high-level MPC. In addition, the desired evolution of the swing leg ends’ coordinates
are taken as a Bézier polynomial connecting the current footholds to the upcoming ones,
computed based on Raibert’s heuristic [165, Eq. (2.4), pp. 46].

We next implement the standard I-O linearization technique [106] to differentiate the local
outputs (4.24) twice along the full-order dynamics (4.23) while ignoring the interaction forces
between the agents. This results in the following output dynamics

ÿi = Φτ (zi) τi + Φf (zi) fi + ϕ(zi) = −KP yi −KD ẏi + δi, (4.25)

where Φτ (zi), Φf (zi), and ϕ(zi) are proper matrices and vectors computed based on I-O
linearization and Lie derivatives similar to [116, Appendix A]. Moreover, KP and KD are
positive definite matrices, and δi is a slack variable to be used later for the feasibility of
the QP-based nonlinear controller. Unlike the high-level trajectory planner of Section 4.3
that takes into account the interaction terms, the low-level nonlinear controller ignores the
interaction forces. In particular, our numerical results in Section 4.5 suggest that considering
holonomic constraints for trajectory planning is crucial for stabilizing cooperative locomo-
tion. However, the optimal trajectories, generated by the high-level MPC, can be robustly
mapped to the full-order model without considering the interaction terms at the low level.
This reduces the complexity of the distributed and full-order model controllers.

By stacking together the Cartesian coordinates of the stance leg ends and then differentiating
them twice, one can get an additional constraint to express zero acceleration for the stance
leg ends. In particular, we have

r̈foot,i = Θτ (zi) τi +Θf (zi) f + θ(zi) = 0, (4.26)

where rfoot,i := col{rℓfoot,i | ℓ ∈ Ci} is a vector containing the Cartesian coordinates of the
stance feet for the agent i. Moreover, Θτ (zi), Θf (zi), and θ(zi) are proper matrices and
vectors computed based on I-O linearization. We them employ the following real-time and
strictly convex QP [74] to solve for feasible (τi, fi, δi) at 1kHz to meet the output dynamics
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(4.17) and the contact equation (4.26)

min
(τi,fi,δi)

γ1
2
∥τi∥2 +

γ2
2
∥fi − fdes,i∥2 +

γ3
2
∥δi∥2

s.t.Φτ (zi) τi + Φf (zi) fi + ϕ(zi) = −KP yi −KD ẏi + δi

Θτ (zi) τi +Θf (zi) fi + θ(zi) = 0

τi ∈ T , f ℓ
i ∈ FC, ∀ℓ ∈ Ci, (4.27)

where γ1, γ2, and γ3 are positive weighting factors, and fdes,i represents the desired evolution
of the GRFs generated by the high-level MPC. The cost function of (4.27) tries to minimize
the effect of the slack variable δi in the output dynamics (4.25) via a high weighting factor γ3
while 1) imposing the actual GRFs of the full-order model fi to follow the prescribed force
profile fdes,i with the weighting factor γ2, and 2) having the minimum-power torques with
the weighting factor γ1.

4.5 Numerical and Experimental Validations

This section aims to validate the proposed layered control architecture composed of the high-
level centralized and distributed MPC algorithms and the low-level distributed nonlinear
controllers via extensive numerical simulations and experiments. We study both the reduced-
and full-order models of cooperative locomotion in numerical simulations to show the robust
stability of the collaborative gaits. We further experimentally investigate the robustness of
the trajectories with a team of two holonomically constrained A1 robots, as shown in Fig.
4.1.

4.5.1 Closed-Loop System

Robot hardware and gait

The hardware platform considered here, the A1 robot, is a torque-controlled quadrupedal
robot platform with 18 DOFs and 12 actuators. More specifically, 12 DOFs of the system
represent the actuated DOFs of the legs’ joints. Each leg consists of a 2-DOF hip joint (roll
and pitch) and a 1-DOF knee joint (knee pitch). The remaining 6 DOFs describe the unactu-
ated position and orientation of the body with respect to the inertial world frame. The robot
is approximately 12.45 (kg) and stands up to about 0.3 (m) off the ground. This work con-
siders a standing height of 0.26 (m) for all experiments. Here, the position of the interactions
points with respect to COMs in the body frames {Bi} is taken as dBi

i = col(0, 0, 0.15) (m)
for all i ∈ I (see (4.1)). Different mechanisms are designed to holonomically constrain the
motion of two robots with ball joints and an adjustable bar length between the agents (see
Fig. 4.5). Furthermore, the mechanisms can limit the ball joints to add further constraints
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Figure 4.5: Illustration of the mechanisms designed to be mounted on the torso of each robot
to holonimcally constrain the motion of agents. The mechanism in (a) can implement the
holonomic constraint (4.2) with free ball joints. The mechanisms in (b), (c), and (d) imple-
ment the constraint (4.2) while also restricting the roll, yaw, and pitch motions, respectively.
The mechanism implemented on top of the robots is illustrated in (e).

on their Euler angles. For numerical and experimental studies in Sections 4.5.2 and 4.5.3,
the nominal length of the bar is 1 (m) (see Fig. 4.1). However, we will alter it to 0.75 (m)
and 1.5 (m) for the robustness analysis.

In the following sections, we study a cooperative trot gait with a swing time of 0.2 (s) and
at different speeds up to 0.5 (m/s) and subject to external disturbances, uncertainties in
holonomic constraints, unknown payloads up to 55% uncertainty in one robot’s mass, and
on different terrains (e.g., slippery surfaces, wooden blocks, gravel, mulch, and grass).
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Figure 4.6: Numerical and experimental validation system setup. Here, the joystick com-
mands the desired velocity trajectories to the trajectory planner of each agent. Both agents
are controlled by one joystick. Joystick sends out the desired trajectories on both numerical
simulations and experimental validations. The network switch is used to build the connection
between the computer and two agents without IP address collision. UDP communication
protocol through Ethernet cables is used in experimental validations.

Computation, control loop, and network

We use RaiSim [105] to simulate both the interconnected reduced- and full-order models
numerically. The proposed high-level centralized and distributed MPC algorithms for tra-
jectory planning and the low-level distributed nonlinear controllers for whole-body motion
control are solved using qpSWIFT [150] at 200 Hz and 1 kHz, respectively. A joystick is
used to command the desired velocity trajectories to the high-level trajectory planner. The
joystick includes two 2-DOFs gimbals, six auxiliary switches, and two knobs for the control-
ling purpose (see Fig. 4.6). The gimbals are used to command the desired speed, whereas
the switches allow us to simultaneously control both agents or individually command them.
This control scheme allows us to coordinate the agents during cooperative locomotion and
unexpected scenarios effectively. This will be discussed further in Section 4.6.5. Moreover,
we remark that the joystick commands the desired trajectories for both the numerical sim-
ulations and experimental validations. The joystick connects with the computer through a
2.4 GHz wireless channel as described in Fig. 4.6.

The proposed layered controller, including the MPC-based trajectory planners and dis-
tributed nonlinear controllers, is solved on an off-board laptop computer with an i7-10750H
CPU running at 2.60 GHz and 16 GB RAM. For the experiment, we use a network switch
in the connection between the robotic team and the computer. The connection diagram is
illustrated in Fig. 4.6. The switch supports 1000 Mbps gigabit Ethernet with five ports. The
robot IP addresses are redefined to avoid IP collision during communication. Here, we also
define the IP routing table and proper IP address on the computer to communicate with both
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Figure 4.7: Snapshots demonstrating the performance of the proposed control approach in
numerical simulations. The left plot shows the snapshot of the numerical simulation with the
interconnected reduced-order model (torso dynamics) and subject to a 5 (kg) payload (40%
uncertainty in one robot’s mass) between the agents. The right plot shows the snapshot of
the numerical simulation with the full-order model and subject to a 5 (kg) payload between
agents and unknown time-varying external disturbances applied to the robots. Arrows at
the leg ends describe the GRFs, and the ones on the torso represent the external disturbance
forces. The payload is illustrated with a box.

agents without data packet confusion. Internally, a UDP protocol through Ethernet cables
is used to communicate between the computer and the robots. The data structure in C++
is used for numerical simulations to communicate between the layered control architecture
and the simulation environment.

Tuning controllers

The control horizon for both the centralized and distributed MPC is taken as N = 5
discrete-time samples, where the time discretization at the high level is 5 (ms). The cen-
tralized and distributed MPC algorithms in (4.16) and (4.22) have 245 and 125 decision
variables, respectively. The stage cost gain of the centralized MPC is tuned as Q =
diag{Qrc1 Qrc2 Qṙc1 Qṙc2 Qξ1 Qξ2 Qω1 Qω2} ∈ R24×24, where Qrci = 105 × diag{3 300 30},
Qṙci = 104 I3×3, Qξi = 108 I3×3, and Qωi = 5 × 103 I3×3, i ∈ I. The terminal cost gain
of the centralized MPC is also tuned as P = 10−1Q ∈ R24×24. The input gains of the
centralized MPC are chosen as Ru = 10−2 I24×24 and Rλ = 104. In a similar manner, the
stage cost gain and terminal cost gain of the distributed MPC on the i-th agent are tuned
as Qi = diag{Qrci Qṙci Qξi Qωi} ∈ R12×12 and Pi = 10−1Qi ∈ R12×12. The input gains of
the distributed MPC are finally chosen as Ru = 10−2 I12×12 and Rλ = 104. Additionally, we
choose the weighting factor for the agreement protocol in (4.22) as w = 10, and the averag-
ing factors in (4.22) are chosen as aii = aij = 0.5 for all i ̸= j ∈ I. The friction coefficient
for both the centralized MPC and distributed MPC algorithms is assumed to be µ = 0.6.
However, the experiments on slippery surfaces assume a lower friction coefficient of µ = 0.3.
For the low-level and distributed nonlinear controllers in (4.27), the weighting factors for the
joint-level torques, force tracking error, and slack variables are chosen as γ1 = 102, γ2 = 104,
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Figure 4.8: Plots of the desired and actual velocities of the closed-loop interconnected
reduced-order model for two agents in the numerical simulation. Here, two nominal MPCs
are applied to the reduced-order models of agents to generate optimal GRFs without con-
sidering the holonomic constraints between them. The joystick provides desired trajectories.
The instability of the cooperative gait is evident.

and γ3 = 106, respectively. We finally remark that the low-level controller uses the same
friction coefficient values from the high-level MPC.

The computation time of the centralized and distributed MPC algorithms under nominal
conditions is approximately 1.38 (ms) and 0.41 (ms), respectively. This shows that the solve
time with the proposed distributed MPC is reduced by 70%. Furthermore, the computation
time of the low-level distributed nonlinear controllers is about 0.12 (ms).

4.5.2 Numerical Validation

Simulation with the reduced-order model

We model the interconnected SRB dynamics in the RaiSim environment for numerical val-
idation and apply the optimal GRFs generated from the proposed centralized (4.16) and
distributed MPC (4.22) algorithms. In addition, for comparison purposes, we apply the
GRFs generated from the nominal MPC that considers a standard SRB model without the
holonomic constraints to this interconnected model. An overview of the numerical simula-
tion environment for the interconnected reduced-order model is illustrated in Fig. 4.7(a).
The evolution of the desired and actual COM velocities using the nominal MPC is depicted
in Fig. 4.8. It is evident that the nominal MPC, which does not consider the holonomic con-
straint between agents, cannot stabilize the interconnected reduced-order system. On the
other hand, the interconnected SRB model performs stable cooperative locomotion when
integrated with the GRFs generated from the proposed centralized and distributed MPCs
as shown in Figs. 4.9 and 4.10, respectively. In these simulations, an unknown payload of
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Figure 4.9: Plots of the desired and actual velocities of the closed-loop interconnected
reduced-order model for two agents in the numerical simulation. Here, the optimal GRFs
are generated by the centralized MPC (4.16) and are applied to the reduced-order models
subject to an unknown payload of 5 (kg) between agents. A joystick provides desired trajec-
tories. The robust tracking is evident.
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Figure 4.10: Plots of the desired and actual velocities of the closed-loop interconnected
reduced-order model for two agents in the numerical simulation. Here, the optimal GRFs
are generated by the distributed MPCs (4.22) and are applied to the reduced-order models
subject to an unknown payload of 5 (kg) between agents. A joystick provides desired trajec-
tories. The robust tracking is evident.

5 (kg) (40% uncertainty in one robot’s mass) is considered between the agents (i.e., in the
middle of the bar), and the joystick provides the desired trajectories. Figures 4.9 and 4.10
illustrate that the closed-loop interconnected reduced-order model robustly tracks the time-
varying desired trajectories subject to unknown payloads. Animations of all simulations can
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Figure 4.11: Comparison between the desired velocities and optimal velocities, generated
with the high-level centralized and distributed MPCs, for the closed-loop interconnected
full-order model in RaiSim. The joystick provides time-varying reference trajectories. The
figure depicts the optimal trajectories generated by (a) the centralized MPC (4.16) and (b)
the distributed MPC (4.22) for agent 1. Here, we consider a trot gait over rough terrain with
an unknown payload of 5 (kg) between the agents and subject to unknown, time-varying,
and external disturbance forces applied to the robots.

be found online 1.

Simulation with the full-order model

We next numerically study the performance of the closed-loop system with the intercon-
nected full-order dynamical model in RaiSim. Here, the proposed layered control approach
is employed, including the centralized and distributed MPC algorithms for trajectory plan-
ning and nonlinear controllers for whole-body motion control. The desired time-varying
trajectories are generated using the joystick. The high-level MPC then generates optimal
GRFs and reduced-order trajectories from the centralized and distributed algorithms. The
distributed low-level controller computes the corresponding joint-level torques to impose the
full-order model to track the optimal trajectories. An overview of the numerical simulation
environment for the full-order model is illustrated in Fig. 4.7(b). The desired trajectories
provided by the joystick together with the optimal trajectories computed by the centralized
and distributed MPC are depicted in Figs. 4.11(a) and 4.11(b). Due to the similarity of the
plots for agents, Fig. 4.11 only includes the trajectories for agent 1. Here, we consider the
trot gait over a randomly generated rough terrain with a maximum height of 5 (cm) (19%
uncertainty in the robot’s nominal height). The gait is also subject to an unknown payload
of 5 (kg) and unknown sinusoidal external disturbance force with the magnitude of 20 (N)

1https://youtu.be/mzAFemO0XeI

https://youtu.be/mzAFemO0XeI
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Figure 4.12: Snapshots demonstrating the performance of the proposed layered control al-
gorithm for a series of cooperative locomotion experiments. Indoor experiments: (a) rough
terrain with the agents traversing arbitrarily displaced wooden blocks, (b) asymmetrical
terrain with one agent being on a compliant surface and elevated by 10 (cm), (c) slippery
surface covered by a cooking spray, and (d) tethered pulling. The robots are loaded with
a payload of 4.53 (kg) (36% uncertainty in one robot’s mass) in (a), (c), and (d). The fric-
tion coefficient is taken as µ = 0.3 in (c) and µ = 0.6 in (a), (b), and (d). Here, (a) and
(b) show the snapshots where the centralized MPC is applied, while (c) and (d) show the
snapshots where the distributed MPC is employed. Videos of all experiments are available
online [https://youtu.be/mzAFemO0XeI].

and the period of 1.0 (s), 0.7 (s), and 0.4 (s) along the x-, y-, and z-directions, respectively.
It is evident that the closed-loop system robustly tracks the desired trajectories.

4.5.3 Experimental Validation and Robustness Analysis

This section experimentally validates the proposed layered control approach with the high-
level centralized and distributed MPC algorithms and the low-level distributed nonlinear
controllers. The robustness of the cooperative gaits on different indoor and outdoor terrains
and subject to unknown payloads and external disturbances is evaluated.

https://youtu.be/mzAFemO0XeI
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Figure 4.13: Comparison between the desired and optimal velocities of the robots for the
nominal trot experiment on flat ground. Optimal velocities are provided from the high-level
centralized MPC. Time-varying desired trajectories are provided by the joystick to coordinate
the robots’ motions. It is observed that the centralized MPC’s outputs can successfully track
the desired trajectories.

Indoor experiments with the centralized MPC

In the indoor experiments, we employ the proposed layered control algorithm on two A1
robots subject to holonomic constraints, where ball joints are applied at the interaction
points (see Fig. 4.12). We first investigate the nominal and cooperative trot gait with
the centralized MPC algorithm on flat ground and without unknown disturbances. The
desired and optimal COM trajectories, generated by the high-level MPC, together with the
generated optimal GRFs, are illustrated in Fig. 4.13 and Fig. 4.14, respectively. It is
evident that the team of two A1 robots performs stable cooperative locomotion while the
trajectory planner effectively tracks the time-varying desired trajectories. Furthermore, the
optimal GRFs generated by the centralized MPC are feasible, with the vertical component
value being close to 60 (N), which is approximately the force required by each stance leg to
support the total mass of each robot during trotting.

We further investigate the robustness of the proposed layered control approach by studying
the tracking performance of the closed-loop system with different experiments, including
locomotion on rough terrain (see Fig. 4.12(a)), locomotion on a slippery surface (see Fig.
4.12(c)), and locomotion subject to unknown external disturbances (see Fig. 4.12(d)), as
shown in Figs. 4.15(a), 4.15(b), and 4.15(c), respectively. In these experiments, the rough
terrain is made of randomly displaced wooden blocks with a maximum height of 5 (cm) (19%
of the robot’s height). Moreover, the slippery surface is a whiteboard covered with cooking
spray. The unknown external disturbances are further applied by a human user, including
pushes and tethered pulls on both agents. The robots cooperatively transport an unknown
payload of 4.53 (kg) (36% uncertainty in one robot’s mass) in all these experiments. The
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Figure 4.14: Plots of the optimal GRFs generated from the centralized MPC for agents 1 and
2 during the nominal trot experiment on flat ground. The figure depicts the z components
of the optimal GRFs for the left front leg of each agent. We remark that the GRFs in the
z-direction are close to 60 (N) since the trot gait is adopted and the total mass of the robot
is 12.45 (kg).

Figure 4.15: Plots of the desired and optimal velocities for cooperative locomotion experi-
ments on (a) rough terrain, (b) a slippery surface, and (c) subject to external disturbances
with the centralized MPC. Time-varying desired trajectories are provided by the joystick.
It is clear that the centralized MPC’s outputs can robustly track the desired trajectories in
the presence of uncertainties and disturbances.

optimal GRFs computed by the MPC on rough terrain, on the slippery surface, and subject
to external disturbances are depicted in Figs. 4.16(a), 4.16(b), and 4.16(c), respectively.
We remark that despite the uncertainties, the GRFs are in the feasible range, and the
MPC’s outputs robustly track the desired and time-varying trajectories. Furthermore, the
phase portraits of the body’s roll and pitch motions (i.e., unactuated DOFs) during these
cooperative trot gaits are shown in Figs. 4.17(a) and 4.17(b). Figure 4.17 indicates that
the A1 robots can perform robustly stable cooperative locomotion in the presence of various
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Figure 4.16: Plots of the optimal GRFs, generated by the centralized MPC, for cooperative
locomotion experiments on (a) rough terrain, (b) a slippery surface, and (c) subject to
external disturbances. The figure depicts the optimal GRFs for the left front leg of agent 1
along the z-direction.

unknown terrains and disturbances. Videos of all experiments are available online 2.

Indoor experiments with the distributed MPC

In this part, we evaluate the performance of the closed-loop system with the proposed dis-
tributed MPC algorithm in similar indoor experiments (see Fig. 4.12). The evolution of the
optimal trajectories generated from the distributed MPC and time-varying desired trajecto-
ries during the cooperative transportation of the same payload over rough terrain, the slip-
pery surface, and subject to unknown disturbances are illustrated in Figs. 4.18(a), 4.18(b),
and 4.18(c), respectively. The optimal GRFs are also shown in Fig. 4.19. The phase portraits
of the body’s roll and pitch motions during the cooperative gait with the distributed MPC
algorithm and subject to these uncertainties are depicted in Figs. 4.17(c) and 4.17(d). It is
evident that the optimal GRFs, generated by the MPC, remain feasible, and the MPC’s out-
puts robustly track the desired trajectories in the presence of unknown terrains and external
disturbances.

Outdoor experiments with centralized and distributed MPCs

We next investigate the performance and robustness of the closed-loop system with the
centralized and distributed MPC algorithms in different outdoor experiments, as shown in
Fig. 4.20. These experiments include cooperative locomotion on gravel, concrete, mulch, and
grass subject to unknown payloads. In these studies, we investigate two different payloads:

2https://youtu.be/mzAFemO0XeI

https://youtu.be/mzAFemO0XeI
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Figure 4.17: Phase portraits for (a) the body roll and (b) the body pitch of agent 1 with the
centralized MPC and (c) the body roll and (d) the body pitch of agent 1 with the distributed
MPCs during different experiments. The plots show the robustness of the cooperative lo-
comotion over rough terrain covered with randomly dispersed wooden blocks, the slippery
surface, and subject to unknown external disturbances.

a payload of 4.53 (kg) (36% uncertainty) in Figs. 4.20(b) and 4.20(c) and a payload of
6.80 (kg) (55% uncertainty) in Figs. 4.20(a) and 4.20(d). The evolution of the virtual
constraints (4.24) for trotting over the gravel and transitioning from concrete to grass with
the centralized MPC and trotting over mulch and grass with the distributed MPC is shown
in Fig. 4.21. As the virtual constraint plots stay close to zero, we can conclude that the
full-order system effectively tracks the optimal reduced-order trajectories generated by the
high-level MPCs. Furthermore, it is evident that the proposed layered control approach
with both centralized and distributed MPCs can robustly stabilize cooperative gaits in the
presence of payloads on unknown outdoor terrains.
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Figure 4.18: Plots of the desired and optimal velocities for cooperative locomotion experi-
ments on (a) rough terrain, (b) a slippery surface, and (c) subject to external disturbances
with the distributed MPC. Time-varying desired trajectories are provided by the joystick.
It is clear that the distributed MPC’s outputs can robustly track the desired trajectories in
the presence of uncertainties and disturbances.
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Figure 4.19: Plots of the optimal GRFs, generated by the distributed MPC, for cooperative
locomotion experiments on (a) rough terrain, (b) a slippery surface, and (c) subject to
external disturbances. The figure depicts the optimal GRFs for the left front leg of agent 1
along the z-direction.

4.6 Discussion and Comparison

Numerical simulations and experimental validations in Section 4.5 show the effectiveness of
the proposed centralized and distributed MPC algorithms for cooperative locomotion. This
section aims to analyze and compare the performance of the proposed MPCs while discussing
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Figure 4.20: Snapshots demonstrate the proposed layered controller’s performance for a series
of cooperative locomotion experiments. Outdoor experiments: (a) cooperative locomotion on
gravel, (b) transitioning from concrete surface to grass, (c) cooperative locomotion on mulch,
and (d) cooperative locomotion on grass. The robots cooperatively transport a payload of
4.53 (kg) (36% uncertainty) in (b) and (c) and 6.80 (kg) (55% uncertainty) in (a) and (d).
Here, (a) and (c) show the snapshots where the distributed MPC is adopted, while (b) and
(d) show the snapshots where the centralized MPC is employed.

their limitations.

4.6.1 Comparison of the Centralized and Distributed MPCs

The robustness of the cooperative locomotion with the proposed centralized and distributed
MPC algorithms in the presence of various uncertainties and disturbances is studied numer-
ically and experimentally in Section 4.5. To compare the performance and robustness of the
proposed trajectory planners, we apply the nominal, centralized, and distributed MPCs over
1500 randomly generated rough terrains in the simulation environment of RaiSim, as shown
in Fig. 4.22(a). Here, the randomly generated landscapes’ maximum height is 12 (cm) (46%
uncertainty in the robot’s height). Furthermore, the total length of the terrain is assumed
to be 10 (m). In these simulations, we evaluate the cooperative locomotion as a success if
the agents reach 10 (m) without losing stability. We assess the locomotion as a failure if at
least one of the agents’ bodies touches the ground before reaching 10 (m). The success rate
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Figure 4.21: Plots of the virtual constraints of agent 1 during cooperative locomotion with
unknown payloads and on various outdoor terrains, including (a) locomotion on gravel, (b)
transitioning from concrete to grass, (c) locomotion on mulch, and (d) locomotion on grass.
The payload is 4.53 (kg) in (b) and (c) and 6.80 (kg) in (a) and (d). Here, (a) and (c) depict
the evolution of virtual constraints with the distributed MPC at the high level. In addition,
(b) and (d) illustrate the evolution of the virtual constraints with the centralized MPC at the
high level. Here, we plot the components of virtual constraints in (4.24) that correspond to
the COM position along the x and y axes (m) (i.e., COM position tracking) and the body’s
roll and pitch angles (rad) (i.e., angle tracking). It is clear that the full-order system tracks
the prescribed optimal and reduced-order trajectories generated by the MPCs.

versus the length of the terrain is depicted in Fig. 4.22(b). The overall success rate of the
nominal, centralized, and distributed MPCs is 0%, 54.2%, and 53.8%, respectively.

Similarly, we compare the performance and robustness of the nominal, centralized, and
distributed MPCs subject to 1200 randomly generated external forces and payloads, as shown
in Fig. 4.22(c). The external force is taken as sinusoidal with a maximum amplitude of 80 (N)
(65% of one robot’s weight) and a maximum period of 4 (s) on the x-, y-, and z-directions.
The maximum mass of the payload is also assumed to be 5 (kg). We evaluate the cooperative
locomotion as a success if the agents sustain the stability until 60 seconds. We assess the
locomotion as a failure if at least one of the agents’ bodies touches the ground before 60
(s). The success rate versus time is depicted in Fig. 4.22(d). The overall success rate of the
nominal, centralized, and distributed MPCs is 0%, 55.6%, and 53.9%, respectively.

Our experimental studies in Figs. 4.13-4.19 and Fig. 4.21 suggest that the proposed cen-
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Figure 4.22: Illustration of the comparison results between the nominal, centralized, and
distributed MPCs. (a) The snapshot shows the RaiSim simulation environment with one
of the randomly generated rough terrains. The maximum height of the generated terrains
is 12 (cm) (46% uncertainty in robots’ height). (b) The plot describes the success rate of
the proposed trajectory planners over 1500 randomly generated rough terrains in numerical
simulations. The overall success rate of the nominal, centralized, and distributed MPCs over
randomly generated rough terrain is 0%, 54.2%, and 53.8%, respectively. (c) The snapshot
shows the RaiSim simulation environment with one of the randomly generated external
forces and a randomly generated payload. The arrows illustrate the applied external forces
on each agent. The maximum external force is 80 (N) (65% of one robot’s weight) on the
x-, y-, and z-directions. The evolution of the forces in each direction is sinusoidal with a
maximum random period of 4 (s). External forces are applied from 1 (s) to 60 (s). The
maximum payload mass is 5 (kg). (d) The plot describes the success rate of the proposed
trajectory planners with 1200 randomly applied external forces and payloads in numerical
simulations. The overall success rate of the nominal, centralized, and distributed MPCs
subject to unknown external forces and payloads is 0%, 55.6%, and 53.9%, respectively.

tralized and distributed trajectory planners show similar robustness in indoor and outdoor
experiments. Slightly better robustness has been observed in numerical simulations of Fig.
4.22 when employing the centralized MPC at the high level. Still, the success rate between
the centralized and distributed MPCs does not significantly differ. These comparisons sug-
gest that the proposed centralized and distributed MPCs can robustly stabilize dynamic
cooperative locomotion. However, the distributed MPC has substantially less computational
time.
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Figure 4.23: Plots of the locally estimated Lagrange multiplier λ by two agents using the
distributed MPC algorithm. It is clear that the local values reach an agreement and stay
close to each other.

4.6.2 Evolution of the Lagrange Multiplier in Distributed MPC

Section 4.6.1 demonstrated a similar success rate for the centralized and distributed MPC
algorithms with the randomly generated terrains and disturbances. To further study this
similar robust stability behavior, Fig. 4.23 illustrates the evolution of the estimated Lagrange
multiplier, λ, for each agent when the agents cooperatively walk with the distributed MPC.
In formulating the distributed MPC, each agent locally estimates the Lagrange multiplier
according to the one-step communication delay and the agreement protocol. Therefore, λ
on each distributed MPC evolves differently. We introduced the consensus protocol in the
cost function of (4.22) to mitigate the divergence of the local estimates and to impose the
agreement. The magnified portion of the plot in Fig. 4.23 shows that the initial λ values
on each agent are different while converging after a short amount of time according to the
consensus protocol. The plot also shows that each agent’s λ values are not precisely the
same during cooperative locomotion. However, we can observe that both λ values stay close.

4.6.3 Synchronization and Asynchronization

We aim to study the robustness of the layered control approach against possible phase
differences between agents that can easily occur on rough terrain, where the discrete-time
transitions (i.e., impacts) happen earlier or later than anticipated times on normal gaits.
To further investigate this point, we study the estimated height of the agents’ front right
legs over rough terrain in Fig. 4.24. Both agents are synchronized at the beginning of the
locomotion. After encountering the rough terrain, the asynchrony is observed in Fig. 4.24.
However, the proposed centralized and distributed MPCs show robust cooperative gaits over
unknown rough terrains, as shown in Figs. 4.12(a), 4.17, 4.20, and Fig. 4.21. Moreover, the
robustness subject to more than 1000 randomly generated rough terrains is also validated in
Fig. 4.22.
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Figure 4.24: Plots of the estimated height of agents’ front right legs. Initial locomotion has
complete synchrony before encountering the rough terrain described in the gray area in the
plot. After engaging the rough terrain, it is clear that asynchrony happens between agents.
However, the layered control approach robustly stabilizes the cooperative gait.

4.6.4 Robustness Against Unknown Holonomic Constraints

The holonomic constraint of Section 4.2 assumes a distance constraint between the inter-
action points of agents. In particular, we take no additional rotational constraints at the
interaction points. This assumption simplifies the interconnected SRB model and, thereby,
the centralized and distributed MPC algorithms. However, more sophisticated connections
could exist, such as limited DOFs on both ends of the holonomic constraint. Here, we
study the robustness of the proposed MPCs subject to uncertainties arising from rotational
restrictions at the interaction points. These constraints can arise from cooperative loco-
manipulation in various applications. Figure 4.25 depicts the body roll and pitch evolution
during cooperative locomotion over rough terrain with different holonomic constraints at the
interaction points, including restrictions on ball joints’ pitch-yaw, yaw-roll, roll-pitch, and
roll-pitch-yaw. These restrictions are implemented with the different mechanisms designed
in Fig 4.5. The robust stability of the cooperative locomotion with the proposed centralized
MPC is shown in the phase portraits of the body roll and body pitch in Figs. 4.25(a) and
4.25(b). The robust stability of the proposed distributed MPC is also illustrated in Figs.
4.25(c) and 4.25(d). We observe that the cooperative locomotion over rough terrain with dif-
ferent and unknown holonomic constraints has robust stability similar to the one illustrated
in Fig. 4.17. However, the phase portraits in Fig. 4.25 show that the unknown additional
interactions from the limited DOFs on both ends of the holonomic constraint can induce
aggressive angular positions and velocity changes.
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Figure 4.25: Phase portraits for (a) the body roll and (b) the body pitch of agent 1 with the
centralized MPC and (c) the body roll and (d) the body pitch of agent 1 with the distributed
MPC during different experiments. The plots show the robustness of the cooperative loco-
motion over rough terrain with fixed DOFs in holonomic constraints on the roll, pitch, and
yaw directions.

4.6.5 Limitations and Future Study

Optimal control with switching

The proposed MPC approaches for cooperative locomotion were shown to be very robust to
various unknown terrains and subject to unknown disturbances. However, the gait presented
here does not exhibit extremely dynamic or highly agile maneuvers. One of the reasons for
this is the relatively small planning horizon (25 (ms)). While the distributed approach pro-
vides an interesting avenue to explore longer horizons in future work due to the considerable
decrease in computation time, long horizons suffer when only considering the current do-
main. For this reason, future work should not only explore increased planning lengths but
should also consider a PWA optimal control formulation [29, Chap. 16] such that the change
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in stance leg configurations can be considered directly by the planner.

Sophisticated constraints between agents

We assumed the holonomic constraint (4.2) with a ball joint on agents to simplify the de-
velopment of the interconnected reduced-order model and the synthesis of centralized and
distributed MPCs. We further studied the robustness of the proposed layered control ap-
proach subject to the unknown restrictions on the ball joints in Section 4.6.4. However,
more sophisticated cooperative tasks may require dexterous manipulation during coopera-
tive locomotion. For instance, quadrupedal robots can be equipped with robotic arms for
loco-manipulation. Our future work will investigate the development of robust control al-
gorithms that systematically address the gap between simplified reduced-order models and
complex dynamical models of cooperative loco-manipulation.

Extension to multi-agents

Our previous work [116] presented quasi-statically stable cooperative gaits for M ≥ 2 agents.
In particular, a closed-form expression for the interconnected LIP models was developed to
address the real-time trajectory planning based on a centralized MPC algorithm. The inter-
connected LIP model cannot address interaction torques between the agents. Furthermore,
the gait is not dynamic. The current chapter presents an interconnected reduced-order
model, based on the SRB dynamics, that addresses interaction torques between the agents
while allowing dynamic cooperative gaits. In addition, centralized and distributed MPC
algorithms are developed for the cooperative locomotion of two agents. However, a closed-
form expression for the Jacobian matrices in (4.13) and (4.15) may not be easily computed
for M ≥ 3 interconnected SRB dynamics with sophisticated holonomic constraints. Our
future work will investigate the extension of the approach for dynamic cooperative locomo-
tion of M ≥ 3 agents with complex holonomic constraints. One possible way is to develop
robust distributed MPC algorithms integrated with reinforcement learning and data-driven
techniques [76, 151] to bridge the gap between interconnected reduced-order models and
full-order models.

Coordination between agents

In numerical simulations, each agent’s global coordinates can be easily used without sensor
limitations or unexpected noises. However, experimental evaluations estimate the agents’
global coordinates via kinematic estimators. The estimation errors may result in unexpected
coordination changes. This chapter addresses this issue by the human operator who coordi-
nates the agents with the corresponding speed commands from the joystick. For example,
the user commands a higher or lower desired speed to the lagging or leading agent, respec-
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tively. Our future work will investigate the design of algorithms that robustly estimate the
global coordinates of the agents in the presence of noisy measurements.

4.7 Summary

This chapter presented a layered control algorithm for real-time trajectory planning and
robust control for cooperative locomotion of two holonomically constrained quadrupedal
robots. An innovative reduced-order model of cooperative locomotion is developed and
studied based on interconnected SRB dynamics. At the high level of the layered control
algorithm, the real-time trajectory planning problem is formulated as an optimal control
problem of the interconnected reduced-order model with two different schemes: centralized
and distributed MPCs. The centralized MPC plans for the global reduced-order states, global
GRFs, and the interaction wrenches between agents. The distributed MPC is developed
based on a one-step communication delay and an agreement protocol to solve for the local
reduced-order states, local GRFs, and the local estimated wrenches. At the low level of the
control scheme, distributed nonlinear controllers, based on QP and virtual constraints, are
developed to impose the full-order model of each agent to track the optimal reduced-order
trajectories and GRFs prescribed by the high-level MPCs.

The effectiveness of the proposed layered control approach was verified with extensive nu-
merical simulations and experiments for the blind and robust cooperative locomotion of two
holonomically constrained A1 robots with different payloads on different terrains and sub-
ject to external disturbances. A detailed study was presented to compare the performance
of the proposed centralized and distributed MPCs over more than 1000 randomly generated
landscapes and external pushes. It was shown that the distributed MPC is robustly stable,
similar to that of the centralized MPC, while the computation time is reduced significantly.
The results also show that both the centralized and distributed MPCs integrated with the
interconnected SRB dynamics can drastically improve the robust stability of cooperative
locomotion compared to the individual nominal MPCs. The experimental results suggest
that the proposed control algorithm can result in robustly stable cooperative locomotion on
different terrains (e.g., wooden blocks, slippery surfaces, grass, mulch, and concrete) sub-
ject to unknown payloads and external disturbances at different speeds. The robustness of
the control approach was also studied against uncertainties in holonomic constraints and
assumptions.



Chapter 5

Conclusions and Future Works

The objective of this chapter is to present a concise summary and possible future works with
final thoughts. In Section 5.1, we will briefly summarize the contributions of Chapters 2, 3,
and 4. Section 5.2 will provide brief discussions about possible future works. Finally, the
dissertation will be concluded with final thoughts in Section 5.3.

5.1 Summary of the Contributions

5.1.1 Event-based MPC and QP-based low-level nonlinear con-
trollers for single-agent legged robots

Chapter 2 developed a hierarchical control algorithm based on nonlinear control, MPC,
and QP, to generate and stabilize locomotion trajectories for complex dynamical models
of quadrupedal robots in a real-time manner. The proposed hierarchical control algorithm
consists of a high-level planner and a low-level nonlinear controller. The high-level planner
generates an optimal COM trajectory according to the LIP dynamics to steer the robot
from an initial state to a final one. The constraints applied to the MPC formulation help
to generate feasible COM trajectories for the reduced-order model. Furthermore, MPC is
solved at the beginning of each continuous-time domain (i.e., event-based MPC) to reduce the
computational burden. A QP-based nonlinear controller was solved at the lower level of the
proposed approach to impose the full-order dynamics to track the optimal trajectories while
keeping all individual GRFs feasible. The effectiveness of the proposed hierarchical control
algorithm with the event-based MPC was evaluated with extensive numerical simulations of
the full-order locomotion model subject to disturbances and uncertainties.

5.1.2 Hierarchical control algorithms with supervisory MPC for
multi-agent legged robots

Chapter 3 developed a hierarchical computational algorithm to enable the real-time plan-
ning and control of collaborative locomotion for multi-agent legged robotic systems that carry
objects. The higher level of the proposed algorithm employs supervisory control, based on
event-based MPC, to generate optimal and reduced-order trajectories for individual agents.

96
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In particular, we proposed an innovative network of reduced-order models subject to holo-
nomic constraints, referred to as the interconnected LIP dynamics, for path planning. Unlike
the LIP model, interconnected LIP dynamics have a nonlinear nature. To address this non-
linearity, we made use of Jacobian linearizations of the interconnected LIP dynamics in the
supervisory MPC. Distributed nonlinear controllers were then implemented at the lower level
of the proposed algorithm to impose the full-order dynamics of each agent to asymptotically
track the optimal trajectories while keeping GRFs at all contacting leg ends in the friction
cone. The proposed hierarchical control algorithm bridges the gap between the network of
reduced- and full-order complex models of cooperative locomotion. It has been numerically
shown that the proposed control approach can generate and robustly stabilize collaborative
locomotion patterns for multi-agent quadrupedal robotic systems in the presence of model
uncertainties arising from unknown payloads and ground height variations.

5.1.3 Layered control architecture with centralized and distributed
approaches for cooperative locomotion of legged robots

Chapter 4 developed a layered control architecture for real-time trajectory planning and
control of the two holonomically constrained quadrupedal robots. At the higher level of the
control architecture, centralized and distributed MPCs are proposed to address the optimal
control problem of the interconnected SRB dynamics. The MPCs compute the reduced-order
states, GRFs, and interaction wrenches between the agents. Additionally, the distributed
MPC approach assumes two local QPs that share their optimal solutions according to a
one-step communication delay and an agreement protocol. In the lower levels of the control
architecture, distributed nonlinear controllers, based on QP and virtual constraints, impose
full-order dynamics to track the prescribed optimal reduced-order trajectories and GRFs.
Based on extensive numerical simulations and experiments, the proposed layered control
approach is shown to be effective for blind, robust, and cooperative locomotion of two A1
robots with different payloads on different terrains and in the presence of external distur-
bances. We remark that the distributed MPC performs similarly to the centralized MPC,
while the computation time is significantly reduced.

5.2 Directions of Future Work

The dissertation addressed layered control algorithms for real-time trajectory planning of a
various number of legged robots. The layered control algorithms’ development contributed
to the robust control for cooperative locomotion of holonomically constrained quadrupedal
robots. However, as highlighted in Chapters 3 and 4, there are some limitations, and this
section introduces the available future works to address those limitations.

In the real-time trajectory planner implementation, we considered a short period as a plan-
ning horizon, which helps mitigate the violation of the assumption that the MPC formulation
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is not considering the PWA system. In future work, long planning horizons have a big pos-
sibility to address highly agile and dynamic gaits without suffering from the computational
burden due to the significant decrease in computational time from distributed MPC. PWA
system control formulation should be addressed together when elongating the planning hori-
zon for managing highly dynamic gaits.

In applying holonomic constraints, we assumed the ball joints on both ends to simplify the
development of the interconnected reduced-order model, which also helps run centralized
and distributed MPCs in real time. However, more sophisticated collaborative tasks can
easily require dexterous manipulation during locomotion. Considering more sophisticated
constraints between agents for representing dexterous manipulation can systematically ad-
dress the gap between simplified reduced-order model and complex full-order models in a
streamlined manner.

Chapter 3 presented quasi-statically stable cooperative gaits for M ≥ 2 agents with a closed-
form expression for the interconnected LIP models to address the real-time trajectory plan-
ning based on a centralized MPC algorithm. One limitation of the interconnected LIP
model was that it could not capture interaction torques. Furthermore, the gait was not
dynamic due to the inherent limitation of the LIP model. Chapter 4 presented intercon-
nected SRB dynamics that address interaction torques between the agents while allowing
dynamic cooperative gaits. However, a closed-form expression for the Jacobian matrices in
MPC formulation may not be easily computed for M ≥ 3 interconnected SRB dynamics with
sophisticated holonomic constraints. In our future work, we will investigate the extension
of the approach for dynamic cooperative locomotion of M ≥ 3 with holonomic constraints
amongst agents. Here we expect the proposed distributed MPC to mitigate the compu-
tational burden when comparing the centralized MPC. We can imagine the other possible
way under the model-free approach aspect. More specifically, developing robust distributed
MPC algorithms integrated with reinforcement learning or data-driven techniques [76, 151]
to bridge the gap between interconnected reduced-order models and full-order models can
be an answer to the robust control for cooperative locomotion.

One limitation was the difference between numerical simulations and experiments. In every
numerical simulation, each agent’s global coordinates can be determined without sensor
limitations or unexpected noises. However, experimental evaluations estimate the agents’
global coordinates via kinematic estimators. The estimation errors may result in unexpected
coordination changes during locomotion. This dissertation, especially in Chapter 4, addresses
this issue by the human operator who coordinates the agents with the corresponding speed
commands from the joystick. Our future work will investigate the design of algorithms that
robustly estimate the global coordinates of the agents in the presence of noisy measurements.
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5.3 Conclusion

This dissertation has contributed to synthesizing layered control architectures with inno-
vative interconnected reduced-order models integrated with high-level centralized and dis-
tributed MPC algorithms for real-time trajectory planning and low-level distributed nonlin-
ear controllers for whole-body motion control. We have shown numerically and experimen-
tally that the proposed layered architectures can address the dynamic cooperative locomotion
of holonomically constrained legged robots with unknown payloads and on rough terrains
and subject to external disturbances. We hope this work shows the blueprint of the applica-
tion of legged robots in collaborative works or as a member of cooperative teams. The steps
in developing the hierarchical control algorithms we introduced could inspire the extension of
control schemes for other high-dimensional complex dynamical systems with underactuation
and hybrid nature.
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